Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.5, 740-745, 1999
가습 형태에 따른 고분자 전해질형 연료 전지의 운전 특성 비교
Comparison of Operation Characteristics of Proton Exchange Membrane Fuel Cell with External and Internal Humidifier
가습 형태를 달리하여 고분자 전해질형 연료 전지 스택을 설계하고 그 성능을 측정하여 가습 영향을 비교하였다. 또 스택의 단위 셀에서 온도를 측정하여 성능과의 관계릉 알아보았다. 대면적화와 적층에 따른 성능 감소는 고분자막-전극사이 및 셀 사이의 접촉 저항의 증가와 원활하지 못한 반응 가스의 공급과 생성물의 제거로 성멸될 수 있다. 외부 가습형 스택의 성능은 내부 가습형 스택에 비하여 월등히 우수하였으며, 스택의 성능은 주로 가습에 좌우된다. 외부 가습형 스택에서는 가운데 단위 셀에서, 내부 가습형 스택에서는 내부 가습기에 가까운 단위 셀에서 각각 우수한 성능을 보였다. 고분자 전해질형 연료전지 스택에서 단위 셀의 온도 및 성능 분포는 가습기 형태와 밀접한 관계를 갖는다.
Proton exchange membrane fuel cell(PEMFC) stacks with external and internal humidifier were made, and those performance were measured and compared each other. After measuring temperatures of the individual cells in the both stacks, we examined the correlation with these performances. The decrease of performance caused by scale-up and stacking could be explained by higher contact resistance of membrane-electrode, higher contact resistance between one individual cell and another, hindrance to provision of reacting gas and to remove generated water. The performance of the external humidifier stack was greater than that of the internal humidifier stack. Humidification is important to the stack performance. Cell performance improved in the middle individual cell of the stack for the external humidifier stack and in the individual cell closed to internal humidifier for the internal humidifier stack. Temperature and performance distribution in the individual cells of the both PEMFC stacks have much correlations with humidifier type of stacks.
[References]
  1. Dhar HP, J. Electroanal. Chem., 357, 237, 1993
  2. Strasser K, J. Power Sources, 37, 209, 1992
  3. Prater KB, J. Power Sources, 37, 181, 1992
  4. Wilson MS, Gottesfeld S, J. Electrochem. Soc., 139, L28, 1992
  5. Ticianelli EA, Derouin CR, Renondo A, Srinivasan S, J. Electroanal. Chem., 251, 275, 1988
  6. Taylor EJ, Anderson EB, Vilambi NRK, J. Electrochem. Soc., 139, L45, 1992
  7. Wilson MS, Gottesfeld S, J. Appl. Electrochem., 22, 1, 1992
  8. Niedrach LW, McKee DW, Paynter J, Danzig IF, Electrochem. Technol., 4, 318, 1967
  9. Gasteiger HA, Markovic NM, Ross PN, J. Phys. Chem., 99(45), 16757, 1995
  10. Gasteiger HA, Markovic NM, Ross PN, J. Phys. Chem., 99(22), 8945, 1995
  11. Andrew MR, McNicol BD, Short RT, Drury JS, J. Appl. Electrochem., 7, 153, 1992
  12. Ross PN, Kinoshita K, Scarpello AJ, Stonehart P, J. Electroanal. Chem., 59, 177, 1975
  13. Staschewski D, Int. J. Hydrog. Energy, 21, 381, 1996
  14. Buchi FN, Srinivasan S, J. Electrochem. Soc., 144(8), 2767, 1997
  15. Watanabe M, Satoh Y, Shimura C, J. Electrochem. Soc., 140, 3190, 1993
  16. Watanabe M, Uchida H, Seki Y, Emori M, Stonehart P, J. Electrochem. Soc., 143(12), 3847, 1996
  17. Mukerjee S, Srinivasan S, J. Electroanal. Chem., 357, 201, 1993
  18. Parthasarathy A, Srinivasan S, Appleby AJ, J. Electroanal. Chem., 339, 101, 1993
  19. Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, De Castro ES, Electrochem. Solid State Lett., 2, 12, 1999
  20. Cisar A, Murphy OJ, Simpson SF, 1996 Fuel Cell Seminar Abstracts, Orlando, FL, 647, 1996
  21. Frnst WD, 1996 Fuel Cell Seminar Abstracts, Orlando, FL, 563, 1996
  22. Chow CY, Wozniczka BM, U.S. Patent, 5,382,478, 1995
  23. Meyer AP, Scheffler GW, Margiott PR, U.S. Patent, 5,503,944, 1996
  24. Watkins DS, Dircks KW, Epp DG, Merritt RD, Gorbell BN, U.S. Patent, 5,200,278, 1993
  25. Choi KH, Park DJ, Rho YW, Kho YT, Lee TH, J. Power Sources, 74(1), 146, 1998