Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.37, No.5, 699-705, 1999
Polyacrylamidoxime에 의한 구리의 흡착속도에 관한 연구
A Kinetic Study of Copper Adsorption with Polyacrylamidoxime
킬레이트형 흡착수지로 polyacrylamidoxime(PAO)을 사용하여 수용액으로부터 구리의 흡착속도 특성을 고찰하였다. PAO의 해리상수와 이에 의한 구리 킬레이트의 안정도 상수 및 총괄흡착 평형상수를 측정하고, 몇 가지 열역학적 상수를 결정하였다. 또 흡착기구를 구명하고, 흡착속도식을 결정하였다. PAO에 의한 구리의 흡착은 흡열반응으로서 2HL+Cu2+ ⇔CuL2+2H+로 표시되었으며, 열역학적 평형상수의 온도 의존성은 ln K = 24.31-5.11T-1로 표시되었다. 흡착속도는 pH 4 이하에서는 PAO의 농도에 비례하고, 구리농도의 1/2승에 비례하며, 수소이온농도의 1/2승에 역비례하나 그 이상의 pH범위에서는 수소이온 농도에는 무관하였다. 실험결과와 이론적 고찰로부터 흡착의 율속단계는 표면확산임을 확인하였다.
The kinetic characteristics of copper adsorption from an aqueous solution with PAO(polyacrylamidoxime) as a chelating adsorbent were investigated to determine the adsorption mechanism, adsorption rate and some thermodynamic constants. As a result the dissociation constant of PAO, the stability constant of chelate and the overall equilibrium constant were experimentally determined. The adsorption rate and the effective surface diffusivity were also determined. The mechanism of copper adsorption with PAO was found to be an endothermic reaction of 2HL+Cu2+ ⇔ CuL2+2H+. The dependence of the thermodynamic equilibrium constant on temperature was expressed as lnK = 24.31-5.11T-1. The adsorption rate of copper was directly proportional to the concentration of PAO, to half power of the copper concentration and inversly to half power of the concentration of hydrogen ion below pH 4, but was constant over pH 4. Based experimental results and theoretical consideration the rate controlling step was found to be the surface diffusion.
[References]
  1. Takaharu I, Hidenaga O, Kagaku Kogaku, 47, 218, 1983
  2. Horazyora S, "Kiretozyusi Ion Korakanzyusi," Koradansya, Tokyo, 1977
  3. Fritz W, Schlunder EU, Chem. Eng. Sci., 36, 721, 1981
  4. Fritz W, Merk W, Schlunder EU, Chem. Eng. Sci., 36, 731, 1981
  5. Suzuki M, Kowazoe K, J. Chem. Eng. Jpn., 8, 379, 1975
  6. Suzuki M, Fuji T, AIChE J., 28, 380, 1982
  7. Komiyama H, SmithJM, AIChE J., 20, 728, 1974
  8. Komiyama H, Smith JM, AIChE J., 20, 1110, 1974
  9. Neretnieks I, Chem. Eng. Sci., 31, 107, 1976
  10. Neretnieks I, Chem. Eng. Sci., 31, 465, 1976
  11. Kowazoe K, Chem. Eng. Sci., 44, 52, 1980
  12. Hashimoto K, Miura K, Nagata LS, J. Chem. Eng. Jpn., 8, 367, 1975
  13. Dryden CE, Key WB, Ind. Eng. Chem., 46, 2294, 1954
  14. Shin JH, Lee SH, Jeong KS, HWAHAK KONGHAK, 37(1), 126, 1999
  15. Liu SL, Chem. Eng. Sci., 22, 871, 1967
  16. Hirotsu T, Katoh S, Sugasaka K, Seno M, Itagaki T, J. Chem. Soc.-Dalton Trans., 1609, 1986
  17. Hirotsu T, Katoh S, Sugasaka K, Seno M, Itagaki T, Sep. Sci. Technol., 21, 1101, 1986
  18. Suh GD, Kim JH, Hea KS, HWAHAK KONGHAK, 28(3), 303, 1990
  19. Stumm W, Morgan JJ, "Aquatic Chemistry," 2nd ed., John Wiley & Sons, New York, 1981
  20. Saito K, Miyauchi T, Kagaku Kogaku Ronbunshu, 7, 545, 1981
  21. Hirotsu T, Katoh S, Sugasata K, Seno M, Itagatki T, Sep. Sci. Technol., 23, 49, 1988