Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.2, 206-214, 1998
트라이클로로에틸렌의 촉매분해반응에 대한 전이금속 산화물 및 담체의 영향
Effect of Supports and Transition Metal Oxides on the Catalytic Decomposition of Trichloroethylene
Pt 및 전이금속 산화물이 여러 종류의 담체에 담지된 촉매상에서 trichloroethylene(TCE)의 제거반응에 대한 촉매활성 및 반응속도론이 연구되었다. Pt이 담지된 촉매의 경우에는 Pt/TiO2 촉매상에서 가장 우수한 TCE 전화율이 관찰되었고, 사용된 담체의 종류에 관계없이 반응 부산물로 perchloroethylene(PCE)이 생성되었다. TiO2에 담지된 Pt 및 전이금속 산화물 촉매상에서 TCE 제거반응에 대한 그 활성 및 PCE의 생성여부는 담지된 활성성분의 종류에 따라 현저히 달랐다. 즉 400℃의 반응온도에서 각 촉매의 TCE 전화율은 CrOx(98 %)>MnOx(79%)>Pt(72%)>CoOx≈CuOx(58%)>FeOx(54%)>NiOx(49%)의 순으로 관찰되었으며, 특히 350℃ 이하의 저온에서 다른 산화물 촉매에 비하여 CrOx/TiO2의 활성이 우수하였다. 또한 CrOx가 Al2O3, HY, activated carbon과 같은 담체상에 담지되었을 때, 그 담체의 종류에 관계없이 반응 부산물로 PCE는 생성되지 않았으나 전 반응온도에 걸쳐서 CrOx/TiO2보다 약 10% 정도 낮은 TCE 전화율이 관찰되었다. 따라서 TCE 제거반응을 대하여 CrOx/TiO2가 가장 우수한 촉매임을 알 수 있었다. CrOx/TiO2상에서 TCE 제거반응에 대한 H2O의 영향은 반응온도에 따라 다르지만 완전히 가역적이었으며, 촉매표면에 H2O와 TCE 제거반응에 대한 반응속도식은 TCE의 공급농도에 대하여 1차 함수로 잘 표현될 수 있었으며, 가장 우수한 촉매활성을 나타내는 CrOx/TiO2 촉매상에서 TCE 제거반응에 대한 활성화 에너지는 약 9.7kca1/mol이며, 이러한 값은 본 연구에서 조사된 같은 반응에 대한 Pt/Al2O3 및 CrOx/Al2O3 촉매의 경우보다 낮았다.
The oxidative decomposition of trichloroethylene(TCE) over supported platinum and transition metal oxide catalysts was examined in a fixed-bed flow reactor system. When Pt catalysts impregnated on various types of support were employed for the decomposition reaction, the formation of perchloroethylene(PCE) as a by-product was frequently observed during the course of reaction. The Pt/TiO2 catalyst exhibited a better performance than the Pt impregnated on the other supports. Over the TiO2-supported catalysts, the decomposition activity depended on the types of active component, and the activity decreased in the order of CrOx(98 %)>MnOx(79%)>Pt(72%)>CoOx≈CuOx(58%)>FeOx(54%)>NiOx(49%) at 400℃. Perchloroethylene was not formed over chromium oxide catalysts, regardless of the types of support employed in the present work. Therefore, CrOx/TiO2 catalyst is the most effective for the oxidative decomposition of TCE under the experimental conditions covered in the present study. Although the effect of H2O on the decomposition of TCE over CrOx/TiO2 catalyst depends on the reaction temperature, it is completely reversible during the course of reaction. This indicates that the activity loss of the catalyst under the wet stream is probably due to the competitive adsorption of H2O and TCE on the catalyst surface. Based upon the decomposition activity of TCE over the catalysts containing 1 to 30 wt% of CrOx about 10 wt% of the loading is optimal for this action. The reaction kinetics of the oxidative decomposition of TCE over CrOx/TiO2 catalyst is first order with respect to its feed concentration with the activation energy of 9.7 kcal/mol which is lower than those over the other catalysts employed in this study.
[References]
  1. Chadha N, Parmele CS, Chem. Eng. Prog., 89(1), 37, 1993
  2. Windawi H, Wyatt M, Platinum Metals Rev., 37, 186, 1993
  3. Ruddy EN, Carroll LA, Chem. Eng. Prog., 89(7), 28, 1993
  4. Armor JN, Appl. Catal. B: Environ., 5(3), N25, 1995
  5. Martin AM, Nolen SL, Gess PS, Baesen TA, Chem. Eng. Prog., 88(12), 53, 1993
  6. Rogers RD, McFarlane JC, Environ. Monit. Assess., 1, 155, 1981
  7. Estes TJ, Shah RV, Vilker VL, Environ. Sci. Technol., 22, 377, 1988
  8. Bond GC, Sadeghi N, J. Appl. Chem. Biotech., 25, 241, 1975
  9. Wang Y, Shaw H, Farrauto RJ, ACS Symp. Ser., 125, 1992
  10. Muller H, Deller K, Despeyroux B, Peldszus E, Kammerhofer P, Kuhn W, Spielmannleitner R, Stoger M, Catal. Today, 17, 383, 1993
  11. Musick J, Williams FW, Ind. Eng. Chem. Prod. Res. Dev., 13, 175, 1974
  12. Manning MP, Hazardous Waste, 1, 41, 1984
  13. Weldon J, Senkan SM, Combust. Sci. Technol., 47, 229, 1986
  14. Subbanna P, Greene H, Desal F, Environ. Sci. Technol., 22, 557, 1988
  15. Hung SL, Pfefferle LD, Environ. Sci. Technol., 23, 1085, 1989
  16. Agarwal SK, Spivey JJ, Howe GB, Butt JB, Marchand E, Stud. Surf. Sci. Catal., 68, 475, 1991
  17. Agarwal SK, Spivey JJ, Butt JB, Appl. Catal. A: Gen., 82, 259, 1992
  18. Imamura S, Tarumoto H, Ishida S, Ind. Eng. Chem. Res., 28, 1449, 1989
  19. Petrosius SC, Drago RS, Young V, Grunewald GC, J. Am. Chem. Soc., 115, 6131, 1993
  20. Stenger HG, Buzan GE, Berty JM, Appl. Catal. A: Gen., 2, 117, 1993
  21. Lago RM, Green ML, Tsang SC, Odlyha M, Appl. Catal. B: Environ., 8(1), 107, 1996
  22. Lindberg RC, Reedy JD, Yang K, U.S. Patent, 4,059,683, 1977
  23. Mendyka B, Rutkowski JD, Environ. Prot. Eng., 10, 5, 1984
  24. Spivey JJ, Butt JB, Catal. Today, 11, 465, 1992
  25. Christian JG, Johnson JE, Int. J. Air Water Pollut., 9, 1, 1965
  26. Wang Y, Shaw H, Farrauto RJ, ACS Symp. Ser., 495, 125, 1992
  27. Yu TC, Shaw H, Farrauto RJ, ACS Symp. Ser., 495, 141, 1992
  28. Chatterjee S, Greene HL, Park YJ, J. Catal., 138, 179, 1992
  29. Ramachandran B, Greene HL, Chatterjee S, Appl. Catal. B: Environ., 8(2), 157, 1996
  30. Bose D, Senkan SM, Combust. Sci. Technol., 35, 187, 1983
  31. Chang WD, Karra SB, Senkan SM, Combust. Sci. Technol., 49, 107, 1983
  32. Chatterjee S, Greene HL, J. Catal., 130, 76, 1991