Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.6, 765-777, 1994
에틸렌 수소화 반응에서 다중성의 존재 가능성에 대한 이론적 연구
Theoretical Study on the Possible Existence of Multiplicity Features in Ethylene Hydrogenation
에틸레 수소화 반응에 대해서 발화점과 소멸점을 가지는 다중 현상의 존재 가능성을 열 및 물질 전달 제한이 배제된 순수한 속도 영역에서 이론적으로 조사하였다. 그리고 여러 연구들에 의해서 속도론적으로 다중 정상상태가 가능하다고 밝혀진 CO 산화 반응과 비교하였다. 이론 및 수치 해석으로부터 에틸렌 수소화 반응에서 다중성의 존재 가능성에 대해서 다음과 같은 결과를 보여준다. 즉, 에틸렌 한 분자가 2개 이상의 활성점에 강하게 흡착하면 다중현상은 얻어질 수 없다. 본 흡착 실험과 다른 연구들로부터, 에틸렌의 화학 흡착은 한 분자당 3-4개의 활성점을 요구하며 수소보다 강하게 흡착을 한다는 사실로부터 속도론적으로 다중성이 존재할 수 있다고 본다. 본 연구로부터 Langmuir-Hinshelwood 메카니즘을 따라 진행되는 반응에서, 각 반응물들의 흡착에서 촉매 활성점과의 화학적 결합수보다는 기하학적으로 점령하는 활성점 수가 다중성의 존재에 중요한 영향을 미친다고 밝혀졌다.
The possible existence of multiplicity features, including ignition and extinction phenomena, is theoretically examined for ethylene hydrogenation in the kinetic region with the exclusion of heat and mass transfer limitations, and then the ethylene hydrogenation is compared with CO oxidation for which it has been claimed in several studies that multiple steady states can come from a purely kinetic process. From both theoretical and numerical analyses, it is concluded that if each chemisorbed ethylene occupies less than two active sites of catalyst more strongly than hydrogen the multiple steady states can exist, but the multiplicity features can not be obtained if an ethylene molecule adsorbs strongly upon more than two active sites. From our experiment and another studies for chemisorptions, it is confirmed that the chemisorption of ethylene requires geometrically 3-4 active sites per each molecule and that is much more strong than one of hydrogen. Therefore, the existence of kinetically induced multiplicity will not be possible for ethylene hydrogenation. On the other hand, the kinetically induced multiplicity for CO oxidation will arise from the fact that carbon monoxide chemisorbs more strongly than oxygen upon less than two active sites. In our study, it is found that the number of geometrically occupied active sites rater than the chemical bonding number in the chemical bonding number in the chemisorption of reactants might exert an important influence on the existence of the multiplicity features in the reaction proceeding via Langmuir-Hinshelwood mechanism.
[References]
  1. Endo I, Furusawa T, Matsuyama H, Catal. Rev.-Sci. Eng., 18, 297, 1978
  2. Eigenberger G, Chem. Eng. Sci., 33, 1263, 1978
  3. Eigenberger G, Int. Chem. Eng., 21, 17, 1981
  4. Takoudis CG, Schmidt LD, Aris R, Chem. Eng. Sci., 36, 1795, 1981
  5. Takoudis CG, Schmidt LD, Aris R, Chem. Eng. Sci., 36, 377, 1981
  6. Kang KS, Ihm SK, Korean J. Chem. Eng., 6(1), 46, 1989
  7. Uppal A, Ray WH, Chem. Eng. Sci., 31, 205, 1976
  8. Kubicek M, Hofmann H, Hlavacek V, Sinkule J, Chem. Eng. Sci., 35, 987, 1980
  9. Svoronos S, Aris R, Stephanopoulos G, Chem. Eng. Sci., 37, 357, 1982
  10. Morbidelli M, Varma A, Chem. Eng. Sci., 36, 1211, 1981
  11. Pereira CJ, Carberry JJ, Varma A, Chem. Eng. Sci., 34, 249, 1979
  12. Lin KF, J. Chem. Eng. Jpn., 13, 292, 1980
  13. Gray P, Scott SK, Chem. Eng. Sci., 39, 1087, 1984
  14. Uppal A, Ray WH, Chem. Eng. Sci., 32, 649, 1977
  15. Matsuura T, Kato M, Chem. Eng. Sci., 22, 171, 1967
  16. Hegedus LH, Oh SH, Baron K, AIChE J., 23, 632, 1977
  17. Pereira CJ, Wang JB, Varma A, AIChE J., 25, 1036, 1979
  18. Vega JM, Linan A, Chem. Eng. Sci., 34, 1319, 1979
  19. Jorgensen DV, Farr WW, Aris R, Chem. Eng. Sci., 39, 1741, 1984
  20. Razon LF, Schmitz RA, Catal. Rev.-Sci. Eng., 28, 89, 1986
  21. Beusch H, Fieguth P, Wicke E, Adv. Chem. Ser., 109, 615, 1972
  22. Beusch H, Fieguth P, Wicke E, Chem. Ing. Tech., 44, 445, 1972
  23. Kunimori K, Uchijima T, Yamada M, Matsumoto H, Hattori T, Murakami M, Appl. Catal., 22, 115, 1986
  24. Frusawa TH, Kunii DJ, Chem. Eng. J., 4, 274, 1971
  25. Han DH, Park OO, Kim YG, Appl. Catal., 86, 71, 1992
  26. Denn MM, "Stability of Reaction and Transfer Process," Prentice-Hall, Englewood Cliffs, N.J., 1975
  27. Nicolis G, Prigogine I, "Self-Organization in Nonequilibrium Systems," John Wiley & Sons, New York, 1977
  28. Soma Y, J. Catal., 59, 239, 1979
  29. Masi M, Sangalli M, Carra S, Cao G, Mordidelli M, Chem. Eng. Sci., 43, 1849, 1988
  30. Horiuti J, Polanyi M, Trans. Faraday Soc., 30, 1164, 1934
  31. Kuester JL, Mize JH, "Optimization Techniques with Fortran," McGraw-Hill, New York, 1973
  32. Carnahan B, Luther HA, Wilkes JO, "Applied Numerical Methods," John Wiley & Sons, New York, 1969
  33. Soma Y, J. Chem. Soc.-Chem. Commun., 1004, 1976
  34. Beebe ER, Yates J, J. Am. Chem. Soc., 108, 663, 1986
  35. Albert MR, Sneddon LG, Surf. Sci., 120, 19, 1982
  36. Steininger H, Ibach HE, Lehwald S, Surf. Sci., 117, 685, 1982
  37. Morrow BA, Sheppard N, J. Phys. Chem., 70, 2406, 1966
  38. Beeck O, Smith AE, Wheeler A, Proc. Roy. Soc. A, 177, 62, 1940
  39. Sabatier P, "La Catalye en Chimie Organique," Lib. Polytechnic., Paris
  40. Smith DL, Merrill RP, J. Chem. Phys., 52, 5861, 1970
  41. Stair PC, Somorjai GA, J. Chem. Phys., 66, 2036, 1977
  42. Harnsberger HF, McClellan AL, J. Colloid Interface Sci., 23, 577, 1967
  43. Spenadel L, Boudart M, J. Chem. Phys., 66, 48, 1962
  44. Renouprez A, Hoang-Van C, Compagnon PA, J. Catal., 34, 411, 1974
  45. Wilson GR, Hall WK, J. Catal., 17, 190, 1970
  46. Hall WK, Lutinski FE, J. Catal., 2, 518, 1963
  47. Poltorak OM, Boronin VS, Russ. J. Phys. Chem., 39, 781, 1965
  48. Nishiyama Y, Wise H, J. Catal., 32, 50, 1974
  49. Yates DJC, Sinfelt JH, J. Catal., 14, 182, 1969
  50. Sinfelt JH, Annu. Rev. Mater. Sci., 2, 641, 1972
  51. Gruber H, J. Phys. Chem., 66, 48, 1963
  52. Komers R, Amenomiya Y, Cvetanovic RJ, J. Catal., 15, 293, 1969
  53. Cormack D, Moss RL, J. Catal., 13, 1, 1969
  54. Freel J, Catalysis, 25, 149, 1972
  55. Isaacs BH, Petersen EE, J. Catal., 85, 1, 1984
  56. Serrano CC, Wolf EE, Caberry JJ, J. Catal., 52, 507, 1978
  57. Palazov A, Bonev C, Shopov D, Lietz G, Sarkany A, Volter J, J. Catal., 103, 249, 1987