Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.1, 78-93, 1993
K/MoS2 촉매상에서 일산화탄소와 수소로부터의 혼합알코올제조에 관한 반응속도식의 모델링
Kinetic Modeling on Mixed Alcohol Synthesis from CO and H2 over K/MoS2 Catalyst
K/MoS2 촉매상에서, 일산화탄소와 수소로부터의 혼합알코올제조에 관한 반응속도론적 모델을 유도하였다. CO 삽입기구로 설명될 수 있는 선형혼합알코올의 합성, 생성물의 전화율 및 선택도를 잘 표현할 수 있는 반응속도식을 유도하여 보다 확고한 반응경로를 확립하였다. 반응중간체에 정상상태가정을 사용하여, 40개의 비선형연립 미분방정식의 형태로 반응속도식을 유도하였다. 유도된 반응속도식은 반응실험조건내의 실험값을 잘 예측하였으며, 이로부터 촉매의 활성에 대한 반응조건의 영향을 아울러 고찰하였다. 알코올류의 생성을 위한 최적온도는 320℃ 부근이었으며, 압력은 높을수록 알코올류의 생성에 유리하였다.
A kinetic model on the synthesis of mixed alcohol from CO and H2 over K/MoS2 catalyst has been developed. The formation of linear mixed alcohol can be elucidated by CO insertion mechanism so that a rigorous kinetic network has been developed to derive the kinetic model that well describes the conversion and selectivity of products. Kinetic model derived in this study consists of 40 coupled nonlinear differential equations with the steady state approximation for reaction intermediates. The model well predicted the experimental observations within the experimental condition. The effect of reaction conditions on the catalytic activity was also examined. Optimal temperature of CO conversion for alcohols was ca. 320℃ and the higher the reactor pressure the more alcohols are produced.
[References]
  1. Xiaoding X, Doesburg EBM, Scholten JJF, Catal. Today, 2, 125, 1987
  2. Collins BM, (Imperial Chemical Industries Ltd.): German Patent, 2302658, 1973
  3. Sugier A, Freund E, (Institute Francais du Petrole): U.S. Patent, 412110, 1978
  4. Sugier A, Freund E, (Institute Francais du Petrole): U.S. Patent, 4291126, 1979
  5. CourtyDurand D, Sugier A, Freund E, (Institute Francais du Petrole): GB Patent, 2118061, 1983
  6. Chaumette P, Courty P, Durand D, Grandvallet P, Travers C, (Institute Francais du Petrole): GB Patent, 2158730, 1985
  7. Quarder GJ, (Dow Chem. Comp.): Eur. Patent, Appl. 0119606, 1984
  8. Storch HH, Golumbic N, Anderson RB, "The Fischer-Tropsch and Related Syntheses," 1st ed., John Wiley & Sons, New York, 1951
  9. Natta G, Columbo U, Pasquon I, "Catalysis," Vol. 5, Chap. 3, Reinhold Publ. Co., New York, 1957
  10. Smith KJ, Anderson RB, Can. J. Chem. Eng., 61, 40, 1983
  11. Smith KJ, Anderson RB, J. Catal., 85, 428, 1984
  12. Santiesteban JG, Bogden CE, Herman RG, Klier K, 9th ICC, II-561, 1988
  13. Smith KJ, Herman RG, Klier K, Chem. Eng. Sci., 45(8), 2639, 1990
  14. Troncon E, Lietti L, Forzatti P, Groppi G, Pasquon I, Catal. Sci. Technol., 1, 255, 1991
  15. Bhasin MM, Bartley WJ, Ellgen PC, Wilson TP, J. Catal., 54, 120, 1978
  16. Lee JS, Oyama ST, Boudart M, J. Catal., 106, 125, 1987
  17. Lee JS, Volpe L, Ribeiro FH, Boudart M, J. Catal., 112, 44, 1988
  18. 우희철, 박태윤, 김영걸, 남인식, 이재성, 정종식, 춘계화학공학회, A-24, 1991
  19. Woo HC, Kim YG, Moon SH, Nam IS, Lee JS, Chung JS, HWAHAK KONGHAK, 28(5), 552, 1990
  20. Woo HC, Park KY, Kim YG, Nam IS, Chung JS, Lee JS, Appl. Catal., 75, 267, 1991
  21. 박태윤, "K/MoS2 촉매상에서 선형혼합알코올합성의 반응속도론적 연구," 석사학위논문, 포항공과대학, 1992
  22. Sarup B, Wojeichowski BW, Can. J. Chem. Eng., 67, 62, 1989
  23. Takoudis CG, Ind. Eng. Chem. Prod. Res. Dev., 23, 149, 1984
  24. Rautavuoma AOI, vanderBann HS, Appl. Catal. A: Gen., 1(5), 247, 1981
  25. Wojciechowski BM, Can. J. Chem. Eng., 64, 149, 1986
  26. Deen AZ, Jacobs J, Baerns M, ACS Symp. Ser., 65, 26, 1978
  27. Wojciechowski BW, Catal. Rev.-Sci. Eng., 30(4), 629, 1988
  28. Newsome DS, Catal. Rev.-Sci. Eng., 21(2), 275, 1980
  29. Marguardt DW, J. Soc. Ind. Appl. Math., 11, 431, 1963
  30. Kittrell JR, "Mathmatical Modling of Chemical Reactions," Academic PRess, New York, London, 8, 97, 1970
  31. Schulz, Z. Phyik. Chem., 1329, 299, 1935
  32. Flory PJ, Z. Physik. Chem., 58, 1877, 1936