Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.39, No.6, 685-691, 2001
SMB(Simulated-Moving Bed) Chromatography를 이용한 R, S-ibuprofen의 분리
Enantio-separation of R,S-ibuprofen using Simulated Moving Bed(SMB) Chromatography
Simulated Moving Bed(SMB) chromatography는 서로 다른 흡착능을 가지는 키랄 화합물의 연속분리에 매우 적합한 공정이며 특히 enantiomers를 포함한 정밀 화학 제품의 산업용 규모의 분리에 적합한 기술이다. Enantiomers의 분리를 위해 8개의 컬럼으로 이루어진 실험실 규모의 HPLC-Simulated Moving Bed 장치를 설치하였고 Kromasil(®)로 충진된 컬럼으로 enantiomers인 ibuprofen 분리 실험을 수행하였다. HPLC 단일 컬럼 실험에서 구한 선형 흡착 등온식을 이용하여 평형 이상계를 근거로 한 triangle theory로부터 SMB의 초기 운전조건을 도출하였으며, 이 초기 조건을 기준으로 완전 분리조건 도출을 위해 recycle, switching time, raffinate 및 feed 유량을 변화시켜 SMB 실험을 수행하였다. Triangle theory에 의해 측정한 초기 운전 조건과 이 조건을 근거로한 체계적인 실험 방법을 통해서 enantiomers인 ibuprofen 분리실험의 SMB최적 운전 조건을 도출하였다.
Simulated Moving Bed(SMB) chromatography is a powerful tool for the continuous separation of binary chiral compounds which have different adsorption affinities. It is a suitable technique for the preparative and production scale separation of fine chemicals, in particular enantiomers. An eight column HPLC-Simulated Moving Bed(SMB) chromatography has been built and operated for the separation of enantiomers. The separation of ibuprofen enantiomers was studied on Kromasil(®) packed columns. The linear adsorption isotherm has been obtained from the single HPLC-column experiments. The initial operating condition for SMB was estimated from the triangle theory. In other to find the optimum operating condition, SMB experiments were carried out with various operating parameters, i.e., recycle flow rate, switching time, raffinate flow rate, and feed flow rate. It was found that the optimum operating condition for the separation of ibuprofen enantiomers would be obtained by the systematic method adopted in this study.
[References]
  1. Ruthven DM, Ching CB, Chem. Eng. Sci., 44(5), 1011, 1989
  2. Ching CB, Ruthven DM, Hidajat K, Chem. Eng. Sci., 40(8), 1411, 1985
  3. Ching CB, Ho C, Hidajat K, Chem. Eng. Sci., 42(11), 2547, 1987
  4. Wooley R, Ma Z, Wang NHL, Ind. Eng. Chem. Res., 37(9), 3699, 1998
  5. Charton F, Nicoud RM, Separex, B.P. 9, 54250 Champigneulles, France, 1
  6. Miller L, Orihuela C, Fronek R, Honda D, Dapremont O, J. Chromatogr. A, 849, 309, 1999
  7. Wu DJ, Xie Y, Ma Z, Wang NHL, Ind. Eng. Chem. Res., 37(10), 4023, 1998
  8. Kusters E, Heuer C, Wieckhusen D, J. Chromatogr. A, 874, 155, 2000
  9. Pais LS, Loureiro JM, Rodrigues AE, Chem. Eng. Sci., 52(2), 245, 1997
  10. Pais LS, Loureiro JM, Rodrigues AE, J. Chromatogr. A, 769, 23, 1997
  11. Khattabi S, Cherrak DE, Mihlbachler K, Guiochon G, J. Chromatogr. A, 893, 307, 2000
  12. Biressi G, Ludemann-Hombourger O, Mazzotti M, Nicoud RM, Morbidelli M, J. Chromatogr. A, 876, 3, 2000
  13. Zenoni G, Pedeferri M, Mazzotti M, Morbidelli M, J. Chromatogr. A, 888, 73, 2000
  14. Storti G, Mazzotti M, Morbidelli M, Carra S, AIChE J., 39(3), 471, 1993
  15. Migliorini C, Mazzotti M, Morbidelli M, AIChE J., 45(7), 1411, 1999