Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.61, No.1, 58-61, 2023
고분자 전해질 연료전지의 활성화과정에서 전압 범위 및 활성화 횟수의 영향
Effect of Voltage Range and Number of Activation Cycles in the Activation Process of a Polymer Electrolyte Fuel Cell
PEMFC(Proton Exchange Membrane Fuel Cells)는 초기 성능향상을 위해 활성화(Activation) 과정이 필수적이다. 제일 많이 사용되는 활성화 방법은 전압변화(부하변화) 방법으로 과잉으로 진행될 경우 전극 촉매 열화를 동반할 수 있다. 많은 활성화 과정에서 전압변화 범위를 0.4 V에서 OCV 까지 넓은 범위에서 활성화를 진행시키는데 전극 촉매 열화 방지와 활성화 시간을 단축시키기 위해 전압변화 범위를 감소시키는 연구가 필요하다. 그래서 본 연구에서는 활 성화 전압범위를 0.4~0.6 V, 0.4~0.8 V, 0.4~OCV로 했을 때 성능과 전극, 고분자막의 특성 변화를 분석해 효과적인 활 성화 방법을 연구개발하고자 하였다. 0.4 V에서 제일 높은 OCV 까지 전압 범위를 넓힌 활성화에서 성능 향상도 제일 낮고 56 사이클 활성화 했을 때 활성화 전보다 오히려 성능이 10% 감소했다. 0.4~0.6 V 활성화 사이클에 의해 성능이 최고 20%까지 제일 높게 향상되고 과잉 활성화에 의한 성능 감소도 제일 작아서 최적 임을 보였다.
The activation process is essential for PEMFC to improve initial performance. The most commonly used activation method is a voltage change (load change) method, which may accompany degradation of the electrode catalyst if excessively performed. In many activation processes, the voltage change range is activated in a wide range from 0.4 V to OCV, and research is needed to reduce the voltage change range in order to prevent electrode catalyst degradation and shorten the activation time. Therefore, in this study, when the activation voltage range was 0.4~0.6 V, 0.4~0.8 V, and 0.4~OCV, we tried to research and develop an effective activation method by analyzing the performance and characteristics of the electrode and polymer membrane. The performance improvement was the lowest in the activation with a wide voltage range from 0.4 V to the highest OCV, and the performance decreased by 10% when activated for 56 cycles. The 0.4~0.6 V activation cycle showed the highest performance improvement up to 20% and the smallest decrease in performance due to overactivation, indicating that it is optimal method.
[References]
  1. Shyam, Kocha S, Bruno, Pollet G, Curr. Opin. Electrochem., 311, 1, 2022
  2. USFCC Single Cell Test protocol
  3. Tsotridis G, Pilenga A, De Marco G, Malkow T, “EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications,” (2015).
  4. Voss HH, Barton RH, Sexsmith M, Turchyn MJ, “Conditioning and Maintenance Methods for Fuel Cells,” Ballard Power Systems Inc.; Canada Patent A2429598A1(2003).
  5. Zhang J, Ramaswamy N, Kumaraguru SP, “Fuel Cell Stack Break-in Procedures and Break-in Conditioning Systems,” (2018).
  6. Rapaport PA, Blowers AJ, James L, Balasubramanian L, “Fast MEA Break-in and Voltage Recovery", (2015).
  7. Choo HS, Hyundai Motor Company, “Method of Accelerating Fuel Cell Activation,” US Patent 20170271693A1(2017).
  8. Serhiy C, Nadiia K, Karl J, Mayrhofer J, Nano Energy, 29, 275, 2016
  9. U.S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  10. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., (2014).
  11. Topalov AA, Cherevko S, Zeradjanin AR, Meier JC, Katsounaros I, Mayrhofer KJJ, Josef C, Chem. Sci., 5, 631, 2014
  12. Oh S, Lim D, Lee D, Park K, Korean Chem. Eng. Res., 58(4), 524, 2020
  13. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290, 2018
  14. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013
  15. Jeong JJ, Jeong JH, Kim SH, Ahn BK, Ko JJ, Park KP, Korean Chem. Eng. Res., 53(4), 412, 2015
  16. Cho HS, Ohashi M, Van Zee JW, ECS Transactions, 41(1), 1487, 2011