Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.61, No.1, 32-38, 2023
리튬이온배터리용 도파민이 코팅된 실리콘/실리콘 카바이드 음극복합소재의 전기화학적 특성
Electrochemical Characteristics of Dopamine coated Silicon/Silicon Carbide Anode Composite for Li-Ion Battery
본 연구에서는 리튬 이온 배터리 용 음극활물질인 실리콘의 사이클 안정성 및 율속 특성을 개선하기 위해 도파민이 코팅된 실리콘/실리콘카바이드/카본(Si/SiC/C) 복합소재의 전기화학적 특성을 조사하였다. Stöber 법에 CTAB을 추가 하여 CTAB/SiO2를 합성한 후 열 흡수제로써 NaCl을 첨가한 마그네슘 열 환원법을 통해 Si/SiC 복합소재를 제조하였 으며, 도파민의 중합반응을 통해 탄소코팅을 하여 Si/SiC/C 음극소재를 합성하였다. 제조된 Si/SiC/C 음극소재의 물리적 특성 분석을 위해 SEM, TEM, XRD와 BET를 사용하였으며, 1M LiPF6 (EC : DEC = 1 : 1 vol%) 전해액에서 리튬 이온 배터리의 사이클 안정성, 율속 특성, 순환전압전류 및 임피던스 테스트를 통해 전기화학적 특성을 조사하였다. 제조된 1-Si/SiC는 100사이클, 0.1 C에서 633 mAh/g의 방전용량을 나타냈으며, 도파민이 코팅된 1-Si/SiC/C는 877 mAh/g으로 사이클 안정성이 향상된 것을 확인할 수 있었다. 또한 5 C에서 576 mAh/g의 높은 용량과 0.1 C/0.1 C 일 때 99.9%의 용량 회복 성능을 나타내었다.
In this study, the electrochemical properties of dopamine coated silicon/silicon carbide/carbon(Si/SiC/C) composite materials were investigated to improve cycle stability and rate performance of silicon-based anode active material for lithium-ion batteries. After synthesizing CTAB/SiO2 using the Stöber method, the Si/SiC composites were prepared through the magnesium thermal reduction method with NaCl as heat absorbent. Then, carbon coated Si/SiC anode materials were synthesized through polymerization of dopamine. The physical properties of the prepared Si/SiC/C anode materials were analyzed by SEM, TEM, XRD and BET. Also the electrochemical performance were investigated by cycle stability, rate performance, cyclic voltammetry and EIS test of lithium-ion batteries in 1 M LiPF6 (EC: DEC = 1:1 vol%) electrolyte. The prepared 1-Si/SiC showed a discharge capacity of 633 mAh/g and 1-Si/SiC/C had a discharge capacity of 877 mAh/g at 0.1 C after 100 cycles. Therefore, it was confirmed that cycle stability was improved through dopamine coating. In addition, the anode materials were obtain a high capacity of 576 mAh/g at 5 C and a capacity recovery of 99.9% at 0.1 C/0.1 C.
[References]
  1. Zhou Y, Yang Y, Hou G, Yi D, Zhou B, Chen S, Lam TD, Yuan F, Golberg D, Wang X, Nano Energy, 70, 104568, 2020
  2. Chen S, Gordin ML, Yi R, Howlett G, Sohn H, Wang D, Phys. Chem. Chem. Phys., 14, 12741, 2012
  3. Zhang H, Li X, Guo H, Wang Z, Zhou Y, Powder Technol., 299, 178, 2016
  4. Profatilova IA, Stock C, Schmitz A, Passerini S, Winter M, J. Power Sources, 222(15), 140, 2013
  5. Ren Y, Zhou X, Tang J, Ding J, Chen S, Zhang J, Hu T, Yang XS, Wang X, Yang J, Inorg. Chem., 58(7), 4592, 2019
  6. Wu XR, Yu CH, Li CC, Carbon, 160(30), 255, 2020
  7. Jia H, Zheng J, Song J, Luo L, Yi R, Estevez L, Zhao W, Patel R, Li X, Zhang JG, Nano Energy, 50, 589, 2018
  8. Wang W, Wang Y, Gu L, Lu R, Qian H, Peng X, Sha J, J. Power Sources, 293(20), 492, 2015
  9. Yu C, Chen X, Xiao Z, Lei C, Zhang C, Lin X, Shen B, Zhang R, Wei F, Nano Lett., 19(8), 5124, 2019
  10. She Z, Gad M, Ma Z, Li Y, Pope MA, ACS Omega, 6(18), 12293, 2021
  11. Fang S, Shen L, Tong Z, Zheng H, Zhang F, Zhang X, Nanoscale, 7, 7409, 2015
  12. Khanna L, Lai Y, Dasog M, Can. J. Chem., 96(11), 965, 2018
  13. An W, Fu J, Su J, Wang L, Peng X, Wu K, Chen Q, Bi Y, Gao B, Zhang X, J. Power Sources, 345(31), 227, 2017
  14. Liebscher J, Mrówczyński R, Scheidt HA, Filip C, Hădade ND, Turcu R, Bende A, Beck S, Langmuir, 29(33), 10539, 2013
  15. d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ, Acc. Chem. Res., 47(12), 3541, 2014
  16. Vecchia NFD, Avolio R, Alfè M, Errico ME, Napolitano A, d’Ischia M, Adv. Funct. Mater., 23(10), 1331, 2013
  17. Fan Z, Ding B, Guo H, Shi M, Zhang Y, Dong S, Zhang T, Dou H, Zhang X, Chem.-Eur. J., 25(45), 10710, 2019
  18. Mishraa AK, Belgamwara R, Janab R, Dattab A, Polshettiwar V, PNAS, 117(12), 6383, 2020
  19. Lee JI, Park SJ, Nano Energy, 2(1), 146, 2013
  20. Liu R, Shen C, Dong Y, Qin J, Wang Q, Iocozzia J, Zhao S, Yuan K, Han C, Lie B, Lin Z, J. Mater. Chem. A, 6, 14797, 2018
  21. Gao P, Tang H, Xing A, Bao Z, Electrochim. Acta, 228, 545, 2017