Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.61, No.1, 19-25, 2023
PEM 수전해에서 막과 전극의 내구성에 미치는 구동 온도의 영향
Effect of Operation Temperature on the Durability of Membrane and Electrodes in PEM Water Electrolysis
PEM (Proton Exchange Membrane) 수전해의 성능향상에 대해 많은 연구개발이 진행되었으나, 내구성에 대한 연구는 아직 초기 단계라고 할 수 있다. 본 연구는 성능향상을 위해 PEM 수전해 구동 온도를 상승시켰을 때, 수전해 내구성 에 미치는 영향에 대해 연구하였다. 50~80℃ 온도 범위에서 일정 전류 조건으로 구동하면서 전압변화, I-V, CV (Cyclic Voltammetry), LSV (Linear Sweep Voltammetry), Impedance, FER (Fluoride Emission Rate) 등을 측정했다. 운전온도 가 상승할수록 열화속도가 증가했다. 50~65℃에서는 IrO2 전극 촉매 열화가 PEM 수전해 셀의 내구성에 주로 영향을 주었다. 80℃에서는 고분자 막과 전극 열화가 비슷하게 진행되어 short 저항이 1.0 kΩ·cm2 이하로 감소하면서 shorting 현상에 의해 구동한지 144시간 만에 성능이 초기의 약 1/3로 감소하였다.
Although a lot of research and development has been conducted on the performance improvement of PEM (Proton Exchange Membrane) water electrolysis, the research on durability is still in early stage. This study investigated effect of temperature on the water electrolysis durability when driving temperature of the PEM water electrolysis was increased to improve performance. Voltage change, I-V, CV (Cyclic Voltammetry), LSV (Linear Sweep Voltammetry), Impedance, and FER (Fluoride Emission Rate) were measured while driving under a constant current condition in a temperature range of 50~80℃. As the operating temperature increased, the degradation rate increased. At 50~65℃, the degradation of the IrO2 electrocatalyst mainly affected the durability of the PEM water electrolysis cell. At 80℃, the polymer membrane and electrode degradation proceeded similarly, and the short resistance decreased to 1.0 kΩ·cm2 or less, and the performance decreased to about 1/3 of the initial stage after 144 hours of operation due to the shorting phenomenon.
[References]
  1. Alexander B, Hartmut S, Renew. Sust. Energ. Rev., 82, 2440, 2018
  2. Ju HK, Badwal S, Giddey S, Appl. Energy, 231(1), 502, 2018
  3. Kumar SS, Himabindu V, Mater. Sci. Technol., 2(3), 442, 2019
  4. Grigoriev SA, Millet P, Fateev VN, J. Power Sources, 177(2), 281, 2008
  5. Millet P, Ngameni R, Grigoriev SA, Mbemba N, Brisset F, Ranjbari A, Etiévant C, Int. J. Hydrog. Energy, 35(10), 5043, 2010
  6. Carmo M, Fritz DL, Mergel J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901, 2013
  7. Kim TH, Lee JH, Cho GJ, Park KP, Korean Chem. Eng. Res., 44(6), 597, 2006
  8. Lee H, Kim TH, Sim WJ, Kim SH, Ahn BK, Lim TW, Park KP, Korean J. Chem. Eng., 28(2), 487, 2011
  9. Oh HS, Nong HN, Reier T, Bergmann A, Gliech M, Teschner D, Strasser P, J. Am. Chem. Soc., 138(38), 12552, 2016
  10. Siracusano S, Baglio V, Dijk N Van, Merlo L, Aricò AS, Appl. Energy, 192(15), 477, 2017
  11. Collier A, Wang H, Yaun X, Zhang J, Wilison DP, Int. J. Hydrog. Energy, 31(13), 1838, 2006
  12. Rakousky C, Reimer U, Wippermann K, Carmo M, Lueke W, Stolten D, J. Power Sources, 326(15), 120, 2016
  13. Chandesris MV, Médeau N, Guillet S, Chelghoum D, Thoby F, Fouda O, Int. J. Hydrog. Energy, 40(3), 1353, 2015
  14. Oh SH, Lim DH, Park KP, Korean Chem. Eng. Res., 59(1), 11, 2021
  15. Zhiani M, Maidi S, Taghiabadi M, FUEL CELLS, 13(5), 946, 2013
  16. Oh SH, Cho WJ, Lim DH, Yoo DG, Park KP, Korean Chem. Eng. Res., 59(3), 333, 2021
  17. Bessarabov D, Wang H, Li H, Zhao N, “PEM Electrolysis for Hydrogen Production: Principles and Applications,” Boca Raton, FL, USA: CRC Press, 2015.
  18. Rasten E, Hagen G, Tunold R, Electrochim. Acta, 48, 3945, 2003
  19. Mench MM, Emin CK, Veziroglu TN, “Polymer Electrolyte Fuel Cell Degradation,” Academic Press, Oxford, Waltham, MA, 64-77, (2012).
  20. Song JH, Kim SH, Ahn BK, Ko JJ, Park KP, Korean Chem. Eng. Res., 51(1), 68, 2013
  21. Lee H, Kim TH, Son IJ, Lee JH, Lim TW, Park KP, Korean Chem. Eng. Res., 47(4), 441, 2009