Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.61, No.1, 1-7, 2023
수소/이산화탄소 가스분리용 다공성 물질 탐색 및 고속전산스크리닝 연구동향
Discovery of Porous Materials for H2/CO2 Gas Separation and High-Throughput Computational Screening
가스 분리 기술은 혼합 가스로부터 신재생에너지 자원 및 환경 오염 물질과 관련된 수소(H2) 및 이산화탄소(CO2)와 같은 주요 가스를 효과적으로 추출할 수 있기 때문에 매우 유용하다. 에너지 소비를 줄이기 위한 가스 분리 기술로서 분리막 공정과 흡착 공정이 널리 사용되고 있는데, 두 공정 모두 분리막과 흡착제의 역할을 하는 다공성 물질이 필요 하다. 특히 다공성 물질의 한 종류인 금속-유기물 골격체(Metal-organic frameworks, MOFs)는 가스 흡착 및 분리를 목 적으로 발전되었다. 그런데 MOF 구조의 수가 지속적으로 증가하고 있지만 시행착오 실험을 통해 우수한 MOF 기반 의 분리막과 흡착제를 발견하는데 효율적이지 않다. 따라서 수소와 이산화탄소를 분리할 수 있는 고성능 다공성 물질 의 발견을 가속화하기 위해 고속전산스크리닝(High-throughput computational screening) 기술이 등장하였고 현재까지 활용되고 있다. 본 리뷰에서는 다공성 물질에 대한 중요한 연구와 수소와 이산화탄소의 가스 분리에 초점을 맞춘 고속 전산스크리닝 기술을 소개한다.
Gas separation technology becomes more useful because key gases such as H2 and CO2 regarding renewable energy resources and environmental pollutant can be effectively extracted in mixed gases. For reducing energy consumption on gas separation, membrane and adsorption processes are widely used. In both processes, porous materials are needed as membrane and adsorbent. In particular, metal-organic frameworks (MOFs), one class of the porous materials, have been developed for the purpose of gas adsorption and separation. While the number of the MOF structures is increasing due to chemical and structural tunability, good MOF membranes and adsorbents have been rarely reported by trial-and-error experiments. To accelerate the discovery of high-performing porous materials that can separate H2 and CO2, a high-throughput computational screening technique was used as efficient skill. This review introduces crucial studies of porous materials and the high-throughput computational screening works focusing on gas separation of H2 and CO2.
[References]
  1. Chu S, Cu Y, Liu N, Nat. Mater., 16, 16, 2016
  2. Khan MA, Al-Shankiti I, Ziania A, Idriss H, Sustain. Energy Fuels, 5, 1085, 2021
  3. Tollefson J, Nature, 464, 1262, 2010
  4. Chu S, Science, 325, 1599, 2009
  5. Tao Y, Xue Q, Liu Z, Shan M, Ling C, Wu T, Li X, ACS Appl. Mater. Interfaces, 6, 8048, 2014
  6. Jaschik J, Tanczyk M, Warmuzinski K, Jaschik M, Chem. Process Eng., 30, 511, 2009
  7. Sircar S, Waldron WE, Rao MB, Anand M, Sep. Purif. Technol., 17, 11, 1999
  8. Park JH, Kim JN, Cho SH, Kim JD, Yang RT, Chem. Eng. Sci., 53, 3951, 1998
  9. Sholl DS, Lively RP, Nature, 532, 435, 2016
  10. U.S. Department of Energy (DOE), “Materials for Separation Technologies: Energy and Emission Reduction Opportunities,” (2005).
  11. Sun C, Wen B, Bai B, Chem. Eng. Sci., 138, 616, 2015
  12. Yang RT, Gas Separation by Adsorption Progress, Butterworth, Boston(1987).
  13. Feng X, Pan CY, Ivory J, Ghosh D, Chem. Eng. Sci., 53, 1689, 1998
  14. Lin JYS, Science, 353, 6295, 2016
  15. Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD, Polymer, 54, 4729, 2013
  16. Peters T, Caravella A, Membranes, 9, 1, 2019
  17. Nomura M, Ono K, Gopalakrishnan S, Sugawara , Nakao SI, J. Membr. Sci., 251, 151, 2005
  18. Duval JM, Kemperman AJB, Folkers B, Mulder MHV, Desgrandchamps G, Smolders CA, J. Appl. Polym. Sci., 54, 409, 1994
  19. Murray LJ, Dincă M, Long JR, Chem. Soc. Rev., 38, 1294, 2009
  20. Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR, J. Am. Chem. Soc., 128, 16876, 2006
  21. Han SS, Goddard WA III, J. Am. Chem. Soc., 129, 8422, 2007
  22. Blomqvist A, Araújo CM, Srepusharawoot P, Ahuja RL, Proc. Natl. Acad. Sci., 104, 20173, 2007
  23. Latroche M, Surblé S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee JH, Chang JS, Sung HJ, Férey G, Angew. Chem.-Int. Edit., 45, 8227, 2006
  24. Mavrandonakis A, Klontzas E, Tylianakis E, Froudakis GE, J. Am. Chem. Soc., 131, 13410, 2009
  25. Mavrandonakis A, Tylianakis E, Stubos AK, Froudakis GE, J. Phys. Chem. C, 112, 7290, 2008
  26. Daglar H, Keskin S, Coord. Chem. Rev., 422, 213470, 2020
  27. An J, Geib SJ, Rosi NL, J. Am. Chem. Soc., 132, 38, 2010
  28. Bae YS, Snurr RQ, Angew. Chem.-Int. Edit., 50, 11586, 2011
  29. Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM, Nature, 453, 207, 2008
  30. Thallapally PK, Tian J, Kishan MR, Fernandez CA, Dalgarno SJ, McGrail PB, Warren JE, Atwood JL, J. Am. Chem. Soc., 130, 16842, 2008
  31. Beck DW, Zeolite Molecular Sieves, John Wiley & Sons, New York(1974).
  32. Li H, Eddaoudi M, Groy TL, Yaghi OM, J. Am. Chem. Soc., 120, 8571, 1998
  33. Furukawa H, Cordova KE, Science, 341, 1230444, 2013
  34. Chen B, Yang Z, Zhu Y, Xia Y, J. Mater. Chem. A, 2, 16811, 2014
  35. Li JR, Sculley J, Zhou HC, Chem. Rev., 112, 869, 2012
  36. Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K, J. Am. Chem. Soc., 126, 32, 2004
  37. Yeo BC, Kim D, Kim H, Han SS, J. Phys. Chem. C, 120, 24224, 2016
  38. Park J, Lively RP, Sholl DS, J. Mater. Chem. A, 5, 12258, 2017
  39. Chung YG, Gómez-Gualdrón DA, Li P, Leperi KT, Deria P, Zhang H, Vermeulen NA, Stoddart JF, You F, Hupp JT, Sci. Adv., 2, 1600909, 2016
  40. Krishna R, van Baten JM, Phys. Chem. Chem. Phys., 13, 10593, 2011
  41. Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D, Chem. Mater., 29, 2618, 2017
  42. Allen FH, Acta Crystallogr. Sect. B-Struct. Sci., 58, 380, 2002
  43. Koyuturk B, Altintas C, Kinik FP, Keskin S, Uzun A, J. Phys. Chem. C, 121, 10370, 2017
  44. Altintas C, Avci G, Daglar H, Gulcay E, Erucar I, Keskin S, J. Mater. Chem. A, 6, 5836, 2018
  45. Avci G, Velioglu S, Keskin S, ACS Appl. Mater. Interfaces, 10, 33693, 2018
  46. Liszka M, Malik T, Manfrida G, Energy, 45, 142, 2012
  47. Martinez I, Romano MC, Chiesa P, Grasa G, Murillo R, Int. J. Hydrog. Energy, 38, 15180, 2013
  48. Dzuryk S, Rezaei E, Ind. Eng. Chem. Res., 59, 18907, 2020
  49. Lim DW, Ha J, Oruganti Y, Moon HR, Mater. Chem. Front., 5, 4022, 2021
  50. Freeman BD, Macromolecules, 32, 375, 1999
  51. Kang Z, Xue M, Fan L, Huang L, Guo L, Wei G, Chen B, Qiu S, Energy Environ. Sci., 7, 4053, 2014
  52. Kang Z, Wang S, Fan L, Zhang M, Kang W, Pang J, Du X, Guo H, Wang R, Sun D, Chem. Commun., 1, 1, 2018
  53. Du Z, Liu C, Zhai J, Guo X, Xiong Y, Su W, He G, Catalysts, 11, 393, 2021
  54. Banu AM, Friedrich D, Brandani S, Dueren T, Ind. Eng. Chem. Res., 52, 9946, 2013
  55. Agueda VI, Delgado JA, Uguina MA, Brea P, Spjelkavik AI, Blom R, Grande C, Chem. Eng. Sci., 124, 159, 2015
  56. Brea P, Delgado J, Águeda VI, Gutiérrez P, Uguina MA, Microporous Mesoporous Mater., 286, 187, 2019
  57. Tong M, Yang Q, Zhong C, Microporous Mesoporous Mater., 210, 142, 2015
  58. Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M, Microporous Mesoporous Mater., 149, 134, 2012
  59. Bakhshandeha A, Levin Y, J. Chem. Phys., 156, 134110, 2022
  60. Li S, Chung YG, Snurr RQ, Langmuir, 32, 10368, 2016