Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.4, 606-612, 2022
K계열 함침 탄소계 흡착제의 실내 저농도 이산화탄소 흡착성능 강화
Development of Potassium Impregnated Carbon Absorbents for Indoor CO2 Adsorption
실내 거주 시간이 늘어나면서 발생하는 CO2를 인체에 무해한 농도인 1,000 ppmCO2 이하로 유지하기 위해 연구들이 활발히 진행 중이다. 본 연구에서는 저농도 CO2흡착제로서 KOH와 K2CO3와 같은 알칼리성 첨가제를 상용 활성탄에 함 침하여 사용하였다. 흡착된 CO2 양은 열중량분석기(TGA)와 chamber(CO2 IR analyzer)로 평가하였다. 비표면적이 928.5 m2/g인 상용 활성탄(AC)은 KOH가 함침 된 KOH/AC(13.6 m2/g)와 K2CO3가 함침 된 K2CO3/AC(288.8 m2/g)보다 비 표면적이 높았다. 챔버실험결과, AC는 CO2를 거의 흡착하지 않았지만, KOH/AC와 K2CO3/AC는 각각 93.5 mgCO2/ gsample 및 94.5 mgCO2/gsample 흡착하였다. 이것은 비표면적 및 미세기공의 부피에 의한 물리적인 흡착 영향보다 알칼리 성 활성점의 증가가 CO2 흡착에 더 유리하게 작용한 것으로 판단된다. KOH/AC와 K2CO3/AC의 재생성능은 chamber test 결과 대조군(K2CO3/Al+Si supports)과 비교했을 때 안정적으로 흡착 성능을 유지하는 것으로 나타났다(3회 반복 실험). 또한, KOH/AC와 K2CO3/AC는 열중량분석기의 절대습도 1%H2O를 고려한 조건에서 145.7 mgCO2/gsample 및 150 mgCO2/ gsample로 나타났다. 따라서 KOH 및 K2CO3 등과 같은 알칼리 성분의 함침은 상용 활성탄의 안정적인 흡착 및 재생 후 흡착성능을 나타내어, 실내 이산화탄소 저감을 위한 흡착제 개발에 적용될 수 있을 것으로 판단된다.
Relatively high indoor CO2 concentration (>1,000 ppm) has a negative impact on human health. In this work, indoor CO2 adsorbent was developed by impregnating KOH or K2CO3 on commercial activated carbon, named as KOH/AC and K2CO3/AC. Commercial activated carbon (AC) showed relatively high BET surface area (929 m2/g) whereas KOH/AC and K2CO3/AC presented lower BET surface area of 13.6 m2/g and 289 m2/g. Two experimental methods of TGA (2,000 ppmCO2, weight basis) and chamber test (initial concentration: 2,000 ppmCO2, CO2 IR analyzer) were used to investigate the adsorption capacity. KOH/AC and K2CO3/AC exhibited similar adsorption capacities (145~150 mgCO2/g), higher than K2CO3/Al+Si supports adsorbent (84.1 mgCO2/gsample). Similarly, chamber test also showed similar trend. Both KOH/AC and K2CO3/AC represented higher adsorption capacities (KOH/AC: 93.5 mgCO2/g K2CO3/AC: 94.5 mgCO2/gsample) K2CO3/Al+Si supports. This is due to the KOH or K2CO3 impregnation increased alkaline active sites (chemical adsorption), which is beneficial for CO2 adsorption. In addition, the regeneration test results showed both K-based adsorbents pose a good regeneration and reusability. Finally, the current study suggested that both KOH/AC and K2CO3/AC have a great potential to be used as CO2 adsorbent for indoor CO2 adsorption.
[References]
  1. Lee DH, Choi YB, J. Korean Society of Safety, 36(1), 86, 2021
  2. http://www.phiko.kr/bbs/board.php?bo_table=z3_01&wr_id=452(2013).
  3. Korean Law Information Center – Indoor Air Quality Control Act (Enforcement Date: Oct. 18, 2018
  4. Kang HR, Lee YH, Eom HK, Kim SS, KIC News, 23(4), 1, 2020
  5. Díaz E, Muñoz E, Vega A, Ordóñez S, Ind. Eng. Chem. Res., 47(2), 412, 2007
  6. Lee KM, Lim HY, Jo YM, Environ. Technol., 33(1), 77, 2012
  7. Lee JY, Park DS, Cho YM, Kwon SP, Hwang YH, Song HJ, Lee SB, “A Study on the Low Concentration Carbon Dioxide Adsorbent and Optimal Conditions,” 29(1), 1-12 (2012).
  8. Kusumastuti R, Sriyono, Pancoko M, Butar-Butar SL, Putra GE, Tjahjono H, J. Phys. Conference Series, 1198(3), 032009, 2019
  9. Brennan JK, Thomson KT, Gubbins KE, Langmuir, 18(14), 5438, 2002
  10. Adinata D, Daud WMAW, Aroua MK, Bioresour. Technol., 98(1), 145, 2007
  11. Zhao G, Aziz B, Hedin N, Appl. Energy, 87(9), 2907, 2010
  12. Moellmer J, Celer EB, Luebke R, Cairns AJ, Staudt R, Eddaoudi M, Thommes M, Microporous Mesoporous Mater., 129(3), 345, 2010
  13. Armstrong MR, Shan B, Cheng Z, Wang D, Liu J, Mu B, Chem. Eng. Sci., 167, 10, 2017
  14. Querejeta N, Gil MV, Pevida C, Centeno AC, J. CO2 Utilization, 26, 1, 2018
  15. Jo DH, Cho KS, Park CG, Kim SH, Korean Chem. Eng. Res., 50(5), 885, 2012
  16. Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc., 124(6), 926, 2002
  17. Lee KM, Jo YM, J. Korean Society Atmospheric Environment, 25(4), 316, 2009
  18. Cai T, Chen X, Tang H, Zhou W, Wu Y, Zhao C, J. CO2 Utilization, 53, 101737, 2021
  19. Zhao C, Guo Y, Li C, Lu S, Appl. Energy, 124, 241, 2014
  20. Jin HK, Trans. Korean Hydrogen New Energy Society, 14(4), 305, 2003
  21. Brennan JK, Thomson KT, Gubbins KE, Langmuir, 18(14), 5438, 2002
  22. Qin Q, Liu H, Zhang R, Ling L, Fan M, Wang B, Appl. Energy, 231, 167, 2018
  23. Jayakumar A, Gomez A, Mahinpey N, Appl. Energy, 179, 531, 2016
  24. Gomez A, Jayakumar A, Mahinpey N, Ind. Eng. Chem. Res., 55(41), 11022, 2016
  25. Wang S, Lee YR, Won Y, Kim H, Jeong SE, Hwang BW, Cho AR, Kim JY, Park YC, Nam H, Lee DH, Kim H, Jo SH, Chem. Eng. J., 437(1), 135378, 2022
  26. Lee KM, Jo YM, J. Korean Ind. Eng. Chem., 19(5), 533, 2008
  27. Suh SS, Lee HJ, Korean Chem. Eng. Res., 54(6), 838, 2016