Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.4, 486-491, 2022
저생 미생물 연료전지(BMFC)의 성능에 미치는 발효 유기물 첨가 효과
Effect of Adding Fermented Organic Matter on the Performance of Benthic Microbial Fuel Cell (BMFC)
저생 미생물 연료전지(BMFC)는 바다나 호수의 뻘 속에서 저생 미생물이 유기물을 분해하면서 발생시키는 전기를 이용하는 친환경적인 에너지 변환장치다. 본 연구에서는 갯벌에 유입되는 생활 폐수가 저생 미생물 연료전지 성능에 어떤 영향을 주는지 파악하고자, 음식물에 들어가는 유기물들을 발효시켜 갯벌과 혼합해서 BMFC 성능을 비교검토 하였다. 박력분과 비타민(B2, B6, B12, C, D, E)이 많이 함유된 음식물을 발효시켜 첨가함으로써 BMFC 성능을 49% 향상시켰다. 발효 유기물의 양이 증가할수록 최고 출력밀도가 증가하였고, 25~29일 발효시킨 발효 유기물이 BMFC에 최적임을 보였다.
A benthic microbial fuel cell (BMFC) is an eco-friendly energy conversion device that uses electricity generated by benthic microorganisms decomposing organic matter in the mud of the sea or lake. In this study, in order to understand how domestic wastewater flowing into tidal flats affects the performance of BMFC. BMFC performance was compared and reviewed by fermenting organic substances in food and mixing them with tidal flats. Performance of the BMFC was improved by 49% by adding fermented food rich in vitamins (B2, B6, B12, C, D, E) and soft flour. The maximum power density increased as the amount of fermented organic matter increased, and it was shown that the fermented organic matter fermented during 25~29 days was optimal for BMFC.
[References]
  1. Grey D, Garrick D, Blackmore D, Kelman J, Muller M, Sadoff C, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 371, 1, 2013
  2. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B, J. Environ. Manage., 92(10), 2355, 2011
  3. Yeung AT, Sep. Purif. Technol., 79(2), 124, 2011
  4. Pandey B, Fulekar MH, Biol. Med., 4(1), 51, 2012
  5. Nester EW, Anderson DG, Roberts CE, Pearsall NN, Nester MT, “Microbiology: A Human Perspective,” 7th Edn., McGraw-Hill, New York, (2011).
  6. Fatin SF, Mohd R, Asim AY, Mohamad NMI, Biochem. Eng. J., 172, 108067, 2021
  7. Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR, Biosens. Bioelectron., 21(11), 2058, 2006
  8. Reimers CE, Tender LM, Fertig S, Wang W, Environ. Sci. Technol., 35(1), 192, 2001
  9. Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A, Electrochim. Acta, 53(2), 468, 2007
  10. Rezaei F, Richard TL, Brennan RA, Logan BE, Environ. Sci. Technol., 41(11), 4053, 2007
  11. Cheng S, Liu H, Logan BE, Environ. Sci. Technol., 40(1), 364, 2006
  12. Oh SH, Kwag HW, Lee YJ, Kim YS, Chu CH, Park KP, Korean Chem. Eng. Res., 57(2), 172, 2019
  13. Karra U, Huang G, Umaz R, Tenaglier C, Wang L, Li B, Bioresour. Technol., 144, 477, 2013
  14. Cristiani P, Carvalho ML, Guerrini E, Daghio M, Santoro C, Li B, Biogeochemistry, 92, 6, 2013
  15. Om PA, Mungray S, Chongdar S, Kumar KA, Kumar M, J. Environ. Chem. Eng., 8, 102757, 2020
  16. Lee H, Kim TH, Sim WJ, Kim SH, Ahn BK, Lim TW, Park KP, Korean J. Chem. Eng., 28(2), 487, 2011