Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.3, 439-445, 2022
전기방사를 이용한 석유계 피치가 코팅된 Si/C Fiber의 전기화학적 성능
Electrochemical Performances of Petroleum Pitch Coated Si/C Fiber Using Electrospinning
본 연구에서는 전기방사를 이용해 제조한 Si/C Fiber 표면에 실리콘과 석유계 피치를 코팅하여 전지의 용량 안정성을 개선하고자 하였다. TEOS와 PAN을 전기방사 Fiber의 전구체로 사용하여 DMF에 용해해 방사하였다. 전기 방사된 Fiber는 탄화, 환원, 피치 코팅 공정의 특성을 분석하여 최적 공정을 조사하였으며, TEOS와 PAN의 비율에 따라 제조 한 음극 소재의 성능을 평가하였다. 탄화/환원 공정 후의 TEOS : PAN = 4 : 6 (CR-46)로 제조된 음극 복합 소재는 657 mAh/g의 용량을 보여주었다. 전기화학적 성능을 개선하기 위하여, CR-46 표면에 실리콘과 석유계 피치를 코팅하였다. 피 치의 조성을 10 wt%로 고정하였을 때, 실리콘의 함량이 증가할수록 용량은 개선되지만, 안정성은 저하됨을 알 수 있 었다. 실리콘의 조성을 10 wt%로 제조한 음극 복합 소재는 982.4 mAh/g의 높은 용량과 86.1%의 용량 안정성을 확인 할 수 있었다. 고속 충·방전 특성을 분석하기 위한 율속 테스트에서는 80.2%의 용량비(5C/0.1C)를 나타내었다.
In this study, Silicon and petroleum pitch were coated on the surface of Si/C fiber manufactured using electrospinning to improve the electrochemical performances. SiO2/PAN fiber was prepared by electrospinning with TEOS and PAN at various ratios dissolved in DMF. The characteristics of carbonization, reduction, and pitch coating processes were investigated for the optimal process of the pitch coated Si/C fiber anode composite. Anode composite prepared with TEOS/PAN = 4/6 (CR-46) after carbonization and reduction process has a capacity of 657 mAh/g. To improve capacity and stability, Si powder and PFO pitch were coated at the surface of CR-46. When the pitch composition was fixed at 10 wt%, it was found that the capacity increased as the weight ratio of silicon increased, but the stability decreased. The pitch coated Si/C fiber composite with 10 wt% silicon has high capacity of 982.4 mAh/g and capacity retention of 86.1%. In the test to evaluate rate performance, the rate capability was 80.2% (5C/0.1C).
[References]
  1. Liang G, Qin X, Zou J, Luo L, Wang Y, Wu M, Zhu H, Chen G, Kang F, Li B, Carbon, 127, 424, 2018
  2. Wachtler M, Besenhard JO, Winter M, J. Power Sources, 94, 189, 2001
  3. Wu H, Chan G, Choi JW, Ryu L, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y, Nat. Nanotechnol., 7(5), 310, 2012
  4. Sohn M, Kim DS, Park HI, Kim JH, Kim H, Electrochim. Acta, 196, 197, 2016
  5. Antitomaso P, Fraisse B, Stievano L, Biscaglia S, Perrot DA, Girard P, Sougrati MT, Monconduit L, J. Mater. Chem. A, 5, 6546, 2017
  6. Huanga L, Wei HB, Ke FS, Fan XY, Li JT, Sun SG, Electrochim. Acta, 54, 2693, 2009
  7. Reneker DH, Yarin AL, Polymer, 49(10), 2387, 2008
  8. Jung JW, Ryu WH, Shin J, Park K, Kim ID, ACS nano, 9(7), 6717, 2015
  9. Ahn M, Hwang S, Han S, Choi M, Byun D, Lee W, Korean J. Chem. Eng., 37(8), 1371, 2020
  10. Teo WE, Ramakrishna S, Nanotechnology, 17(14), R89, 2006
  11. Kim HY, Ju YW, Korean J. Chem. Eng., 38(7), 1522, 2021
  12. Dahn JR, Zheng T, Liu Y, Xue JS, Science, 270, 590, 1995
  13. Zhang X, Qu H, Ji W, Zheng D, Ding T, Abegglen C, Qiu D, Qu D, ACS Appl. Mater. Interfaces, 12(10), 11589, 2020
  14. Jo YJ, Lee JD, Korean J. Chem. Eng., 57(1), 5, 2019
  15. Rahaman MSA, Ismail AF, Mustafa A, Polym. Degrad. Stabil., 92(8), 1421, 2007
  16. Lai J, Guo H, Wang Z, Li X, Zhang X, Wu F, Yue P, J. Alloy. Compd., 530, 30, 2012
  17. Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16, 2016
  18. Zuo X, Wang X, Xia Y, Yin S, Ji Q, Yang Z, Cheng YJ, J. Power Sources, 412, 93, 2019
  19. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA, Langmuir, 28(13), 5834, 2012
  20. Ko HS, Choi JE, Lee JD, Appl. Chem. Eng., 25, 592, 2014
  21. Wang Y, Wen X, Chen J, Wang S, J. Power Sources, 281, 285, 2015
  22. Jo YJ, Lee JD, Korean Chem. Eng. Res., 56(3), 320, 2018
  23. Lee JH, Kim SH, Kim W, Choi WJ, TKPE, 14(6), 457, 2009
  24. Oh SH, Park SM, Kang DW, Kang YC, Cho JS, J. Ind. Eng. Chem., 83, 438, 2020