Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.3, 377-385, 2022
숯의 수분 흡착성능 연구
A Study on Moisture Adsorption Capacity by Charcoals
우리나라 전통 숯가마로부터 제조된 숯의 표면형상과 흡착특성을 분석한 후, 습도와 온도를 조절하면서 이들의 수 분 흡착성능을 측정하고 황토, 활성탄소섬유 직포 및 활성탄소섬유 종이의 수분 흡착성능과 비교하였다. 숯은 소수성 이므로 45% 이하의 습도에서는 수분을 잘 흡착하지 않지만 습도가 증가하면 흡착성능이 서서히 1차식에 비례하여 증 가하였다. 황토 분말도 낮은 습도에서는 숯과 유사했지만 습도가 증가하면 흡착성능이 기하급수적으로 증가하면서 Type V 등온흡착곡선을 보였다. 따라서 조선시대에 기상청 직원들이 숯과 황토의 수분 흡착능력을 일기예보에 적용하였다 는 기록을 실험적으로 확인할 수 있었다. 활성탄소섬유 직포와 활성탄소섬유 종이는 수분 흡착능력이 월등하고 신속 한 반응을 보이므로 습도측정 센서에 적용할 수 있다고 판단된다. 숯 조각의 등온흡착 및 탈착곡선 측정에서 흡착질인 질소의 탈착이 잘 이루어지지 않아 낮은 압력 이력현상(low-pressure hysteresis)이라는 독특한 Type I과 Type IV의 혼 합형태를 보이는데, 이는 질소입자가 흡착시에 숯 세공의 틈새를 비비고 들어가 단단히 끼었다가 탈착시에 빠져나오 지 않기 때문이다. 숯을 분말로 분쇄하면 이러한 틈새들이 분쇄되어 비표면적이 증가하고 낮은 상대압력에서 흡착질 의 탈착량이 증가되었다.
Surface morphology and adsorption characteristics of charcoals prepared from Korean traditional kiln were analyzed, and their moisture adsorption capacities were examined with respect to humidity and temperature change. Moisture adsorption capacities of red-clay powder, activated carbon fiber fabric (ACF fabric) and activated carbon fiber paper(ACF paper) were also examined to compare with those of charcoals. Moisture adsorption capacity of charcoal was low less than 45% humidity due to its hydrophobic property, but it slowly and linearly increased as increasing the humidity. Moisture adsorption capacity of red-clay powder was similar to charcoal at low level humidity, it increased exponentially as increasing the humidity showing Type V adsorption isotherm. Therefore, the weather forecast annal prepared by employee of weather centre in Joseon Dynasty is experimentally approved. ACF fabric and ACF paper show excellent moisture adsorption capacities, which can be used to humidity measuring sensor. Adsorption isotherm of charcoal slice was peculear showing the mixed Type I and Type IV due to low-pressure hysteresis that was occurred from embedment of nitrogen in crevice of charcoal. The specific surface area of charcoal increased by grinding charcoal slice to powder, resulted in increasing the desorption amount of adsorbent at low relative pressure.
[References]
  1. Cooney DO, “Activated Charcoal,” Marcel Dekker, New York, 33-34(1980).
  2. Davis WN, “Deposition Gold from its Solutions,” U. S. Patent 227,963(1880).
  3. Lee KS, “A Study on the Use of Charcoal as a Folk Medicine,” Ph.D. Dissertation, Yonsei Univ.(1988).
  4. Heo J, “Dong-ui Bogam,” Hoolryondogam, (Kwanghae 5, 1613), Daeseong Culture Co., “Dong-ui Bogam,” (1988).
  5. Joseon D, “Veritable Record of the Joseon Dynasty,” Veritable Record of Sunjo, vol. 199(Sunjo 39, 1606).
  6. Lim YJ, “Jeungbo Forest Economy,” (Youngjo 42, 1766). Rural Development Administration, “Translation of Old Agriculture Book 6, Jeungbo Forest Economy III,” p. 229(2003).
  7. Jeong DJ, Dang S, “Daemyungyeul Jikhae,” Hongmoonkwan (Taejo 4, 1395).
  8. Yeum KS, Lee KY, “Temperature and Humidity Changes of Indoor Apartment and House during 4 Seasons in Korea,” Proceedings of The Korean public health association, p. 126 (2011).
  9. IUPAC, Pure Appl. Chem., 31(4), 577, 1972
  10. Zsigmondy A, Inorg. Chem., 71, 356, 1911
  11. Lippens BC, de Boer JH, J. Catal., 4, 319, 1965
  12. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470, 1983
  13. Everett DH, Powl JC, J. Chem. Soc.-Faraday Trans., 72, 619, 1976
  14. Langmuir, I., J. Amer. Chem. Soc., 40, 1361(1918).
  15. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60(2), 309, 1938
  16. Gregg SJ, Sing KSW, “Adsorption, Surface Area and Porosity,” 2nd ed. Academic Press, London, Chap. 1, p. 1(1982).
  17. Arnell JC, McDermott HL, Proceedings of the 2nd International Congress on Surface Activity II, p. 113, Butterworths, London (1957).
  18. Bailey A, Cadenhead DA, Davies DH, Everett DH, Miles AJ, Trans. Faraday Soc., 67, 231, 1971
  19. McEnaney B, J. Chem. Soc.-Faraday Trans., 70, 84, 1974
  20. Deitz VR, Berlin E, J. Colloid Interface Sci., 44(1), 57, 1973
  21. Pope MI, Gregg SJ, Fuel, 39(3), 267, 1960
  22. Kim DW, Kwac LK, Kim HG, Ryu SK, Carbon Lett., 32, 295, 2022
  23. Kiselev AV, J. Colloid Interface Sci., 28(3-4), 430, 1968
  24. Ma QF, Tou ZQ, Yong KN, Lim YY, Lin YF, Wang YR, Zhou MH, Shi FF, Niu L, Dong XY, Chan CC, Sens. Actuators B-Chem., 257, 800, 2018
  25. Duan ZH, Zhao QN, Wang S, Yuan Z, Zhang YJ, Li X, Wu YW, Jiang YD, Tai HL, Sens. Actuators B-Chem., 305, 127534, 2020
  26. Lee KI, Yeom DW, J. Korea Ins. Ecol. Archi. Environ., 12(6), 99, 2012
  27. Kanamori Y, Itoh E, Moyairi K, Mol. Cryst. Liq. Cryst., 427, 325, 2007
  28. Tetelin AC, Leville CP, Kaous GN, Sens. Actuators B-Chem., 91, 211, 2003
  29. Zhang DZ, Zong XQ, Wu ZL, Sens. Actuators B-Chem., 287, 398, 2019
  30. Yuk JH, Kim YH, Lee DC, Proc. STRC meetings on Sensor Technol., 2(1), 35, 1991
  31. Jung KH, High Sensitivity Capacitive Humidity Sensors,” Master Thesis, Korea University (2013).