Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.3, 327-333, 2022
리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과
Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery
본 연구에서는 고용량 음극 소재로 활용되는 실리콘의 부피팽창을 개선하기 위해 Si/CNT/C 음극 복합소재를 제조 하였다. Si/CNT는 표면 개질에 의한 양전하 실리콘과 음전하 CNT의 정전기적 인력에 의해서 제조되었고, 수열합성에 의해서 구형의 Si/CNT/C 복합소재를 합성하였다. 전극 제조는 poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA) 및 styrene butadiene rubber (SBR) 바인더를 사용하였고, 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) 전해액 및 fluoroethylene carbonate (FEC)가 첨가된 전해액을 사용하여 전지를 제조하였다. Si/CNT/C 음극 복합소재는 SEM, EDS, XRD 및 TGA를 사용하여 물리적 특성을 분석하였으며, 사이클, 율속, dQ/dV 및 임피던스 테스트를 통해 리튬 이온 배터리의 성능을 조사하였다. 활물질로 Si/CNT/C 복합소재, 바인더로 PAA/SBR, 전해액으로 FEC 10 wt%가 첨 가된 EC:DMC:EMC 용매를 사용했을 경우, 50 사이클 후 914 mAh/g의 높은 가역 용량과 83%의 용량 유지율 및 2 C/0.1 C에서 70%의 속도 특성을 보여주었다.
In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/ CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.
[References]
  1. Eshetu GG, Zhang H, Judez X, Adenusi H, Armand M, Passerini S, Figgemeier E, Nat. Commun., 12, 5459, 2021
  2. Piwko M, Kuntze T, Winkler S, Straach S, Härtel P, Althues H, Kaskel S, J. Power Sources, 351, 183, 2017
  3. Karkar Z, Guyomard D, Roué L, Lestriez B, Electrochim. Acta, 258, 453, 2017
  4. Etacheri V, Haik O, Goffer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D, Langmuir, 28(1), 965, 2012
  5. Xu ZL, Liu X, Luo Y, Zhou L, Kim JK, Prog. Mater. Sci., 90, 1, 2017
  6. Su M, Liu S, Tao L, Tang Y, Dou A, Lv J, Liu Y, J. Electroanal. Chem., 844(2), 86, 2019
  7. Zhang Y, Li K, Ji P, Chen D, Zeng J, Sun Y, Zhang P, Zhao J, J. Mater. Sci., 52, 3630, 2017
  8. Shao D, Tang D, Mai Y, Zhang L, J. Mater. Chem. A, 1, 15068, 2013
  9. Zhou S, Zhang M, Xian X, J. Appl. Polym. Sci., 138(3), 49688, 2021
  10. Choi NH, Lee JD, Korean Chem. Eng. Res., 59(3), 326, 2021
  11. Yang XQ, McBreen J, Yoon WS, Yoshio M, Wang H, Fukuda K, Umeno T, Electrochem. Commun., 4(11), 893, 2002
  12. Lee DY, Lee MH, Kim KJ, Heo S, Kim BY, Lee SJ, Surf. Coat. Technol., 200(5-6), 1920, 2005
  13. Lee HY, Lee JD, Korean Chem. Eng. Res., 54(4), 459, 2016
  14. Zhang WJ, J. Power Sources, 196(3), 877, 2011
  15. Li X, Cho JH, Li N, Zhang Y, Williams D, Dayeh SA, Picraux ST, Adv. Energy Mater, 2(1), 87, 2012
  16. Park BH, Jeong JH, Lee GW, Kim YH, Roh KC, Kim KB, J. Power Sources, 394, 94, 2018
  17. Chen H, Wu Z, Su Z, Hencz L, Chen S, Yan C, Zhang S, J. Energy Chem., 62, 127, 2021
  18. Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K, J. Phys. Chem. C, 115(27), 13487, 2011
  19. Ha S, “Electrochemical and Thermal Behavior of Energy Storage and Conversion Systems: Lithium Ion Batteries and PEM Fuel Cells,” ProQuest, 3664028(2015).
  20. Xu C, Lindgren F, Philippe B, Gorgoi M, Björefors F, Edström K, Gustafsson T, Chem. Mater., 27(7), 2591, 2015
  21. Lee JH, Kim SH, Kim W, Choi WJ, Trans. Korean Inst. Power Electron., 14(6), 457, 2009