Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.1, 145-150, 2022
방사광 X-선 영상법을 이용한 소수성 마이크로 관 내 물-글리세롤 혼합물 슬러그 계면 가시화를 통한 동적접촉각 상관식 검증
Verification of the Experimental Correlation for Dynamic Contact Angle by Visualizing Interfaces of Water-Glycerol Mixture Slug in a Hydrophobic Microtube via Synchrotron X-ray Imaging
움직이는 접촉선에서의 계면 거동을 이해하기 위해 많은 연구자들은 동적접촉각에 대한 연구를 지속적으로 연구해 왔다. 하지만 가시화 기술의 한계로 선행연구에서의 동적접촉각에 대한 실험은 일반적으로 친수성 미세관에서 가시광선 기반으로 실험이 수행되었다. 하지만, 최근 다양한 연구 및 산업 분야에서 소수성 미세관에서의 동적접촉각에 대한 연구의 필요성이 대두되고 있다. 따라서, 본 연구에서는 높은 공간 및 시간 분해능을 갖는 방사광 X-선 영상법을 이용하여 소수성 마이크로 튜브 내 물-글리세롤 혼합물 슬러그의 동적접촉각을 측정하였으며, 이를 바탕으로 기존의 동적접촉각 실험 상관식을 검증하였다.
Dynamic contact angles have investigated by numerous researchers for understanding interfacial behavior at moving contact lines However, due to limitation of visualization techniques, previous experiments for dynamic contact angles have conducted limitedly in hydrophilic capillary tubes based on visible ray. Recently, there is continuous need for research on dynamic contact angles in hydrophobic capillary tubes on various research and industrial fields. Therefore, in this study, we measure the dynamic contact angles of water-glycerol mixture slug in hydrophobic microtubes using synchrotron X-ray imaging. Based on the visualized data, we verified the previous experimental correlations for dynamic contact angles.
[References]
  1. Rose W, Heins RW, J. Colloid Sci., 17, 39, 1962
  2. Hansen RJ, Toong TY, J. Colloid Interface Sci., 37, 196, 1971
  3. Hoffman RL, J. Colloid Interface Sci., 50(2), 228, 1975
  4. Hoffman RL, J. Colloid Interface Sci., 94, 470, 1983
  5. Kenji K, Wakimoto T, Yamamoto Y, Ito T, Exp. Therm. Fluid Sci., 60, 354, 2015
  6. Kim SH, Wang T, Zhang L, Jiang Y, J. Mech. Sci. Technol., 32(11), 5305, 2018
  7. Heshmati M, Piri M, Langmuir, 30(47), 14151, 2014
  8. Jiang TS, Soo-Gun OH, Slattery JC, J. Colloid Interface Sci., 69(1), 74, 1979
  9. Bracke M, De Voeght F, Joos P, Trends in Colloid Interface Sci. III, 79, 142 (1989).
  10. Seebergh JE, Berg JC, Chem. Eng. Sci., 47(17-18), 4455, 1992
  11. Meuler AJ, McKinley GH, Cohen RE, ACS nano, 4(12), 7048, 2010
  12. Sarti GC, Gostoli C, Matulli S, Desalination, 56, 277, 1985
  13. Figeys D, Pinto D, Anal. Chem., 72(9), 330A, 2000
  14. Kuiper S, Hendriks BHW, Appl. Phys. Lett., 85(7), 1128, 2004
  15. Lim C, Wang CY, Electrochim. Acta, 49(24), 4149, 2004
  16. Sikalo S, Tropea C, Ganic EN, Exp. Therm. Fluid Sci., 29(7), 795, 2005
  17. Park SC, Kwak HJ, Kim MH, Fezzaa K, Lee YW, Yu DI, Langmuir, 36(38), 11207, 2020
  18. Lee S, Park JS, Lee TR, Langmuir, 24(9), 4817, 2008
  19. Blake TD, Shikhmurzaev YD, J. Colloid Interface Sci., 253(1), 196, 2002