Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.60, No.1, 116-124, 2022
통합 하이브리드시스템의 압력강하 거동 및 바이오필터 담체의 미생물 population 분포
Pressure Drop of Integrated Hybrid System and Microbe-population Distribution of Biofilter-media
교대로 운전되는 광촉매반응기 공정, 및 바이오필터 공정(전통적 바이오필터(L 반응기)와 두 개의 유닛(unit)을 가지는 개선된 바이오필터시스템(R 반응기))로 구성된 통합처리시스템에서, 에탄올과 황화수소를 동시 함유한 폐가스 처리를 수행하는데 발생하는 공정 당 압력강하(△p)와 바이오필터 공정의 미생물 population 분포를 관찰하였다. 교대로 운전되는 광촉매 반응기의 △p는, 바이오필터의 △p와 비교할 때에 무시할 정도로 작게 관찰되었다. L 반응기의 △p는, 통합처리시스템의 운전 중에 계속 증가하여 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m)로 증가하였다. 한편 R 반응기의 경우에서는 L 반응기의 △p의 약 16~20% 이하인 작은 △p를 나타내었다. 본 연구에서 적용한 공극율이 큰 폐타이어 담체 등의 바이오필터 담체 및 R 반응기 설계의 적용이, 목재 칩(wood chip)과 목재 바크(wood bark)의 50 대 50인 혼합물을 바이오필터 담체로 사용한 전통적 바이오필터의 보고된 압력강하 값의 각각 37~50%와 40~53% 만큼 압력강하 저감에 공헌하였다고 분석되었다. 또한 본 연구의 R 반응기 운전에서 압력강하 값이, 공극율이 큰 화산석(scoria)과 compost를 75 대 25로 혼합한 복합 담체를 충전한 전통적 바이오필터의 보고된 압력강하 값보다 약 80%만큼 저감된 결과는 주로 R 반응기 설계의 적용에 기인하였다고 해석되었다. 한편, 통합처리시스템에서 바이오필터 담체의 microbial population 분포로서 L 반응기 및 R 반응기의 담체 내 미생물 콜로니 수 비교에서는 L 반응기가 제일 밑단에서 다른 윗 단의 콜로니 수보다 거의 두 배로 증가하였으나; R 반응기의 경우는 Rdn 반응기와 Rup 반응기 각각의 상단과 하단에서 고르게 분포하였고 L 반응기보다 콜로니 수가 평균적으로 약 50% 정도 더 컸다. 이러한 현상은 R 반응기의 상단과 하단의 함수율이 50-55%의 고른 분포를 보인 것에 기인하였다. 따라서 개선된 바이오필터시스템이 전통적 바이오필터보다 △p와 미생물 population 분포에서 더욱 우수한 특성을 보였다.
In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two alternatively-operating UV/photocatalytic reactor-process and biofilter processes of a biofilter system having two units with an improved design (R reactor) and a conventional biofilter (L reactor). Both a pressure drop (△p) per unit process of the integrated hybrid system and a microbe-population-distribution of each biofilter process were observed. The △p of the UV/photocatalytic reactor process turned out very negligible. The △p of the L reactor was observed to increase continuously to 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m). In case of R reactor, its △p showed the one below ca. 16~20% of the △p of the L reactor. Adopting such microbes-carrying biofilter media with high porosity as waste-tire crumb media, and the improved biofilter design, contributed to △p of this study, reduced by ca. 37~50% and 40~53%, respectively, from the reported △p of conventional biofilter packed with biofilter media of the mixture (50:50) of wood chip and wood bark. In addition, the △p of R reactor in this study, reduced by ca. 80% from the reported △p of conventional biofilter packed with biofilter media of the mixture (75:25) of scoria with high porosity and compost, was mainly attributed to adopting the improved biofilter design. On the other hand, in case of L reactor, the CFU counts in its lowest column was analyzed double as much as those in any other columns. However, in case of R reactor, its CFU counts were bigger by 50% than the one of L reactor and its microbes were evenly distributed at its higher and lower columns of Rdn reactor and Rup reactor. This phenomena was attributed to an even moisture distribution of 50~55% of R reactor at its higher and lower columns. Therefore, R reactor showed superb characteristics in terms of both △p and microbe-population-distribution, compared to L reactor.
[References]
  1. Ndegwa PM, Hristov AN, Arogo J, Sheffield RE, Biosystems Engineering, 100(4), 453, 2008
  2. Sun Y, Quan X, Chen J, Yang F, Xue D, Liu Y, Yang Z, Process Biochemistry, 38(1), 109, 2002
  3. Baltrenas P, Janusevicius T, Kleiza J, Processes, 9(4), 625, 2021
  4. Yang CP, Suidan MT, Zu XQ, Kim BJ, Water Sci. Tech., 48, 89, 2003
  5. Alonso C, Suidan MT, Kim BR, Kim BJ, Environ. Sci. Technol., 2, 3118, 1998
  6. Okkerse WJH, Ottengraf SPP, Osinga-Kuipers B, Okkerse M, Biotechnol. Bioeng., 63(4), 418, 1999
  7. Smith FL, Sorial GA, Suidan MT, Breen AW, Bismas P, Environ. Sci. Technol., 30, 1744, 1996
  8. Cox HHJ, Deshusses MA, J. Eng. Appl. Sci., 62, 216, 1999
  9. Cox HHJ, Deshusses MA, Water Res., 33, 2383, 1999
  10. Moe WM, Irvine RL, J. Environ. Eng., 126, 826, 2000
  11. Kenes C, Veiga MC, Rev. Environ. Sci. Biotechnol., 1, 201, 2002
  12. Yang CP, Suidan MT, Zu XQ, Kim BJ, Environ. Prog., 22, 87, 2003
  13. Dorado AD, Baeza JA, Lafuente J, Gabriel D, Gamisans X, Chem. Eng. J., 209, 661, 2012
  14. Chen L, Hoff SJ, Applied Engineering in Agriculture, 28(6), 893 (2012).
  15. Kristensen EF, Kofman PD, Jensen PD, Biomass Bioenerg., 25(4), 399, 2003
  16. Shareefdeen Z, Korean J. Chem. Eng., 32(1), 15, 2015
  17. Lee EJ, Lim KH, Korean J. Chem. Eng., 29(10), 1373, 2012
  18. Swanson WJ, Loehr RC, Journal of Environmental Engineering, 123(6), 538(1997).
  19. Williams TO, Miller FC, Biocycle, 33, 72, 1992
  20. Baquerizo G, Maestre JP, Sakuma T, Deshusses MA, Gamisans X, Gabriel D, Lafuente J, Chem. Eng. J., 113(2-3), 205, 2005
  21. Chen YX, et al., “Long-term Operation of Biofilters for Biological Removal of Ammonia. Chemosphere,” 58(8), 1023 (2005).
  22. Chen L, Hoff SJ, Applied Engineering in Agriculture, 25(5), 751 (2009).
  23. Grubecki I, Biosystems Engineering, 139, 100, 2015
  24. Amin MM, Rahimi A, Bina B, Heidari M, Moghadam, Journal of Environmental Health Science & Engineering, 12(1), 140(2014).
  25. Lee EJ, Lim KH, Korean Chem. Eng. Res., 51(1), 127, 2013
  26. Lim KH, Lee EJ, Korean Patent No. 10-0942147(2010).
  27. Lee EJ, Lim KH, Korean Chem. Eng. Res., 600(1), 100, 2022
  28. Lee EJ, Lim KH, Korean Chem. Eng. Res., 59(4), 574, 2021
  29. Lee EJ, Chung CH, Lim KH, Korean Chem. Eng. Res., 59(4), 584, 2021