Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.59, No.4, 611-625, 2021
백운석의 소성 조건에 따른 제조 Mg crown의 특성에 관한 연구
A Study on the Characteristics of Manufactured Mg Crown on the Calcining Conditions of Dolomite
국내에서 채광한 백운석(Ca·Mg(CO3)2) (20~30 mm)을 활용하여 Mg crown을 제조하였다. 백운석을 사용하여 경소백운석(CaO·MgO)을 제조하기 위하여, (a) 전기로(950 °C, 480분)와 (b) 마이크로웨이브 가열로(950 °C, 60분)를 사용하는 공정을 적용한 결과를 서로 비교하였다. 전기로 공정의 경우에는 CaO 56.9 wt%, MgO 43.1 wt%, 마이크로웨이브 가열로 공정의 경우에는 CaO 55 wt%, MgO 45 wt%가 얻어졌다. 마이크로웨이브 가열로를 사용한 공정에서는 백운석의 탈탄산 반응 시간을 1/8로 단축하여도 경소백운석을 제조할 수 있었다. 수화 시험(hydration reaction, ASTM C110)은 경소백운석의 수화 반응성의 기준이 되는데, 전기로 공정의 경우에는 고 반응성(최고 온도 79.8 °C/1.5 분)을 나타내었다. 이러한 수화 반응은 CaO의 수화 반응에 의해 일어나는 것을 XRD 분석 결과에서 확인할 수 있었으며, 마이크로 가열로 공정의 경우에는 저 반응성(최고 온도 81.7 °C/19.5 분)을 나타내었다. 이러한 낮은 수화 반응성은 CaO의 수화 반응이 일어난 후에 MgO의 수화 반응이 일어나서 CaO와 MgO가 모두 수화물 형태로 되는 것을 XRD 분석 결과에서 확인하였다. 전기로와 마이크로웨이브 가열로를 사용하여 1,230 °C, 60분, 5 × 10-2 torr의 조건에서 규소열환원 공정으로 제조한 Mg crown은 전기로 공정의 경우에 58.8 g 그리고 마이크로웨이브 가열로 공정의 경우에 74.6 g을 얻을 수 있었다.
Mg crowns were manufactured using domestic dolomite (Ca·Mg(CO3)2) (20~30 mm). In order to manufacture the calcined dolomite (CaO·MgO), (a) electric furnace (950 °C, 480 min) and (b) microwave furnace (950 °C, 60 min) processes were used. As a result of XRD analysis, it was analyzed as (a) CaO 56.9 wt%, MgO 43.1 wt% by electric furnace process and (b) CaO 55 wt%, MgO 45 wt% by microwave furnace process. Even when the decarbonation reaction time of dolomite was shortened by 1/8 in microwave furnace process compare with electric furnace process, the calcined dolomite could be produced. The hydration reaction (ASTM C 110) is a standard for the hydration reactivity of calcined dolomite, and the calcined dolomite produced by electric furnace process showed a high hydration reactivity (max temp 79.8 °C/1.5 minutes). Such hydration reactivity was occurred by only CaO hydration reaction and that was confirmed by XRD analysis. The calcined dolomite produced by microwave furnace process showed low hydration reactivity (max temp 81.7 °C/19.5 minutes). Such low hydration reactivity was occurred by CaO and MgO hydration reaction due to the hydration reaction of CaO thereafter occurring of the hydration reaction of MgO, and that was confirmed by XRD analysis. The prepared Mg crown were 58.8 g and 74.6 g by electric furnace and microwave furnace processes, respectively, under the reaction conditions of 1,230 °C, 60 min, 5 × 10-2 torr by silicothermic reduction.
[References]
  1. Pidgeon LM, King JA, Trans. Farady Soc., 4, 197, 1948
  2. Morsi IM, El Barawy KA, Morsi MB, Canadian Metallurgical Quartely, 41, 15, 2002
  3. Choi H, Park RL, Park DG, Transactions of the KSME A, 10, 2502(2010).
  4. Choi H, Park RL, Park DG, Transactions of the KSME A, 10, 2727 (2010).
  5. Zhang C, Wang C, Zhang SJ, Guo LJ, Ind. Eng. Chem. Res., 54(36), 8883, 2015
  6. Choi H, Park DG, Kim DS, KR patent, 10-2011-0050743 (2011).
  7. Kim MC, Han GS, Choi GS, KR patent, 10-2013-0051288(2013).
  8. Choi H, Park DG, Lee JG, KR patent, 10-2013-0075394 (2013).
  9. Han GS, Park DG, KR patent, 10-2012-0074972(2010).
  10. Han GS, Park DS, KR patent, 10-2012-0074971(2010).
  11. Ramakrishnan S, Koltun P, Resources, Conserv. Recycl, 42, 49, 2004
  12. Gao F, Nie Z, Wang Z, Int. J Life Cycle Assess, 14(5), 480, 2009
  13. Francesco C, Marco R, Sergio U, Resources, Conserv. Recycl., 52, 1093, 2008
  14. Hwang DJ, Ryu JY, Park JH, Yu YH, Lee SK, Cho KH, Han C, Lee JD, J. Ind. Eng. Chem., 18(6), 1956, 2012
  15. Hwang DJ, Ryu JY, Park JH, J. Ind. Eng. Chem., 1507(5), 2013
  16. Hwang DJ, Ryu JY, Yu YH, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 20(5), 2727, 2014
  17. Hwang DJ, Yu YH, Baek CS, Lee GM, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 30, 309, 2015
  18. Cho GH, KR patent, 10-2013-0028299(2013).
  19. Hang S, CN patent, 204594220(2015).
  20. Huang YM, Li JE, CN patent, 206457532(2017).
  21. Wada Y, Suzuki E, Maitni M, JP patent, 2015-222785(2015).
  22. Fukui Y, Wada Y, Suzuki E, JP patent, 2016-004089(2016).
  23. Hwang DJ, Yu YH, Park JM, KR patent, 10-2017-0097006(2017).
  24. Huang YM, Li JE, CN patent, 106498185 A(2017).
  25. Huang YM, Li JE, CN patent, 106756107 A(2017).
  26. Li WX, Hao JX, Shuai L, CN patent, 101376928(2008).
  27. Wada Y, Fuji S, Suzuki E, Sci Rep., 7, 46512, 2017
  28. Park SY, Pohang University of Science and Technology, Pohang, 2011(Master. -Ing. Thesis).
  29. Zhang MJ, Li JD, Guo QF, Light Metals, 12, 39, 2005
  30. Xu D, Zhang XP, Li G, Ming Metall., 17(2), 39, 2008
  31. Xu LM, Ferro-alloy, 33, 3, 2008
  32. Wang YW, Feng NX, Yu J, Chin. J. Vac. Sci. Technol., 32, 889, 2012
  33. Hu WX, Liu J, Feng NX, Light Metals., 5, 42, 2010
  34. Feng NX, Wang YW, Chin. J. Nonferrous Metals., 21, 2678, 2011
  35. Hyun KH, Ji JY, Kwon YC, Korean Chem. Eng. Res., 57(1), 1, 2019
  36. Bes A, Ottovon-Guericke University Magdeburg, Germany, 2006(Dr.-Ing. Thesis).
  37. Park DG, KR patent, 10-2009-0133310(2009).
  38. Park YY, Hwang KS, Lee BK, KR patent, 10-2011-0142242 (2011).
  39. Eom HS, Park DG, Han GS, KR patent, 10-2011-0143667 (2011).
  40. Park DG, Choi H, Kim DS, KR patent, 10-2011-0145169 (2011).
  41. Han GS, Choi GS, KR patent 10-2012-0002771(2011).
  42. Choi GS, Han GS, KR patent 10-2012-0002768(2012).
  43. Choi GS, Han GS, Kim MC, KR patent 10-2012-0002758 (2012).
  44. Choi H, Park DG, Han SH, KR patent 10-2011-0143749 (2011).
  45. Park DG, Kim HS, KR patent 10-2009-0133312(2009).
  46. Cho WW, Shi SK, KR patent 10-2012-0151285(2012).
  47. Yu YH, Hwang DJ, Ahn YJ, KSMER, 58(2), 2288, 2021