Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.59, No.4, 596-610, 2021
다양한 커플링제로 표면 개질된 실리카들을 활용한 음이온성 염료 및 중금속의 제거
Removal of Anionic Dyes and Heavy Metal Ions Using Silica Nanospheres or Porous Silica Micro-particles Modified with Various Coupling Agents
스토버 방식에 의한 구형 단분산 입자와 에멀젼 액적을 미세 반응기로 활용하여 합성한 주름진 표면을 갖는 실리카입자 및 거대 기공을 갖는 다공질 실리카 입자를 커플링제로 표면 개질하여 흡착제로 활용하였다. 아민기를 포함하는 실란 또는 타이타네이트 커플링제를 활용하여 기존의 실리카 재료로는 흡착이 어려웠었던 중금속과 음이온성 염료에 대한 흡착력이 향상된 것을 관찰할 수 있었다. 음이온 염료에 대한 흡착에서는 APTES로 표면 개질한 다공질 실리카가 흡착 효율이 가장 높은 결과를 나타내었고, 중금속 구리에 대한 흡착 결과는 AAPTS로 표면 개질한 다양한 실리카분말에서 모두 100%에 가까운 흡착 효율을 얻을 수 있었다.
For application in adsorption process, we synthesized silica nanospheres by Stober method, and silica particles with wrinkled surface as well as macroporous silica particles were also fabricated by utilizing emulsion droplet as micro-reactors, followed by modification of the particle surface using suitable coupling agents containing amine groups. These particles exhibited improved adsorption capacity for heavy metal ions and anionic dyes, which were difficult to be removed by conventional silica particles without surface modification. Anionic dye, methyl orange could be removed almost completely by adsorption using porous silica particles modified using APTES. The adsorption efficiency of heavy metal like copper ions was close to 100%, when porous silica was used as adsorbent particles modified with AAPTS.
[References]
  1. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WE, Appl. Microbiol. Biotechnol., 56(1-2), 81, 2001
  2. Mittal AK, Gupta SK, Wat. Sci. Technol., 34(10), 81, 1996
  3. Fu F, Wang Q, J. Environ. Manage., 92(3), 407, 2011
  4. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wei B, Carbon, 41(14), 2787, 2003
  5. Ritchie SMC, Bhattacharyya D, J. Hazard. Mater., 92(1), 21, 2002
  6. Rengaraj S, Moon SH, Wat. Res., 36(7), 1783, 2002
  7. Liang X, Zang Y, Xu Y, Tan X, Hou W, Wang L, Sun Y, Colloids Surf. A: Physicochem. Eng. Asp., 433, 122, 2013
  8. Crini G, Bioresour. Technol., 97(9), 1061, 2006
  9. Prelot B, Einhorn V, Marchandeau F, Douillard JM, Zajac J, J. Colloid Interface Sci., 386, 300, 2012
  10. Yusmaniar, Purwanto A, Putri EA, Rosyidah D, AIP Conf. Proc., 1823, 2017
  11. Despoina DA, Triantafyllidis KS, Lazaridis NK, Matis KA, Colloids Surf. A: Physicochem. Eng. Asp., 346, 83, 2009
  12. Cashin VB, Eldridge DS, Yu A, Zhao D, Environ. Sci. Water Res. Technol., 4(2), 110, 2018
  13. Walker P, Handbook of Adhesive Technology, Ch10 (2003).
  14. Krysztafkiewicz A, Rager B, Jesionowski T, J. Mater. Sci., 32(5), 1333, 1997
  15. Sun Y, Kunc F, Balhara V, Coleman B, Kodra O, Raza M, Johnston LJ, Nanoscale Adv., 1, 1598, 2019
  16. Yoon HS, Hwang UY, Park HS, Korean Chem. Eng. Res., 34(5), 636, 1996
  17. Song SK, Kim JH, Hwang KS, Ha KR, Korean Chem. Eng. Res., 49(2), 181, 2011
  18. Park U, Park JY, Kim JY, Kim YS, Ryu JH, Won JC, Polymer, 35(4), 302, 2011
  19. Lim YH, Kim DK, Jeong YK, J. Korean Powder Metall. Inst., 23(6), 442, 2016
  20. Elkady MF, Hassan HS, Hashim AM, Jokull, 65(2), 390, 2015
  21. Garcia N, Benito E, Guzman J, Tiemblo P, Morales V, Garcia RA, Microporous Mesoporous Mater., 106, 129, 2007
  22. Palos-Barba V, et al., Materials, 13(4), 927, 2020
  23. Walcarius A, Etienne M, Bessiere J, Chem. Mater., 14, 2757, 2002
  24. Woo Y, Choo C, Clean Technol., 17(2), 150, 2011
  25. Li WJ, He ZM, Zheng J, Hu ZD, IEEE Access, 7, 44359, 2019
  26. Bois L, Bonhomme A, Ribes A, Pais B, Raffin G, Tessier F, Colloids Surf. A: Physicochem. Eng. Asp., 221, 221, 2003
  27. Talavera-Pech WA, et al., J. Sol-Gel Sci. Technol., 80, 697, 2016
  28. Otalvaro JO, Avena M, Brigante M, J. Environ. Chem. Eng., 7(5), 2019
  29. Mahtabani A, Rytoluoto I, Anyszka R, He X, Saarimaki E, Lahti K, Paajanen M, Dierkes W, Blume A, ACS Appl. Polym. Mater., 2, 3148, 2020
  30. Wu ZJ, Xiang H, Kim T, Chun MS, Lee K, J. Colloid Interface Sci., 304(1), 119, 2006