Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.59, No.2, 281-295, 2021
Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성
Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts
Si/(Si + Al) 몰비를 30 몰%까지 변화시켜 제조한 SiO2-Al2O3 복합 산화물(SA) 상에 니켈을 함침법으로 제조한 촉매 상에서 에탄올의 아민화반응에 미치는 영향을 연구하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 X-선회절분석(XRD), N2 흡착분석, 이소프로판올 승온탈착(IPA-TPD), 에탄올 승온탈착(EtOH-TPD), 수소 승온환원(H2-TPR), H2 화학흡착, 투과전자현미경(TEM) 분석을 수행하였다. SA 복합 산화물 상에서 Si/(Si + Al) = 30 몰%가 될 때까지 지속적으로 산점이 증가하였다. 담지된 Ni 금속의 분산도, 비표면적 및 산 특성 등이 촉매 반응활성에 복합적으로 영향을 미쳤다. 산점 증가와 니켈 산화물의 낮은 환원 온도는 아세토니트릴 생성에 유리하게 작용하는 것으로 사료된다. 에탄올의 전환율 측면에서는 10 wt% Ni이 담지된 Si/(Si +Al) = 10 몰% 촉매가 가장 높은 전환율을 보였으며 이를 기준으로 화산형 형태를 나타냈고, Ni 금속 분산도와 경향이 일치했다.
In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.
[References]
  1. Pollak P, Romeder G, Hagedorn F, Gelbke HP, Ullmann’s Encyclopedia of Industrial Chemistry, 24, 251 (2000).
  2. Zimmermann FK, Mayer VW, Scheel I, Resnick MA, Mutation Research, 149, 339, 1985
  3. Yong H, Park H, Jung C, J. Power Sources, 447, 227390, 2020
  4. Liu G, Guo Y, Zhu H, Yan H, Zhu B, Li G, Optoelectr. Adv. Mater., 10, 293, 2016
  5. Chen G, Fujimori K, Lee H, Nashed-Samuel Y, Phillips J, Rogers G, Shen H, Yee C, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 78, 1646, 2011
  6. Prates J, Martins G, Lopez-Fernandez H, Lodeiro C, Capelo JL, Santos HM, Talanta, 182, 333, 2018
  7. Abaci S, Yildiz A, Turk. J. Chem., 33, 215, 2009
  8. Smith AE, J. Chromatogr. A, 129(22), 309, 1976
  9. Rao RR, Srinivas N, Kulkarni SJ, Subrahmanyarn M, Raghavan KV, Ind. J. Chern., 36A, 708, 1997
  10. Zhang Y, Zhang Y, Feng C, Qiu C, Wen Y, Zhao J, Catal. Commun., 10, 1454, 2009
  11. Martin A, Lucke B, Catal. Today, 57(1-2), 61, 2000
  12. Corker EC, Mentzel UV, Mielby J, Riisager A, Fehrmann R, Green Chem., 15, 928, 2013
  13. Yao Q, Zhang Y, Fu Y, ACS Sustainable Chem. Eng., 7, 16173, 2019
  14. Galanov SI, Sidorova OI, Golovko AK, Philimonov VD, Kurina LN, Rozhdestvenskiy EA, Eurasian ChemTech J., 3, 173, 2001
  15. Yamamoto T, Org. Synth. Chem., 21(3), 196, 1963
  16. Ayari F, Mhamdi M, Delahay G, Ghorbel A, J. Sol-Gel Sci. Technol., 49, 170, 2009
  17. Rhimi B, Mhamdi M, Ghorbel A, Kaleyaru VN, Martin A, Perez-Cadenas M, Guerrero-Ruiz A, J. Mol. Catal. A-Chem., 416, 127, 2016
  18. Pelckmans M, Renders T, Van de Vyver S, Sels BF, Green Chem., 19, 5303, 2017
  19. Balat M, Balat H, Appl. Energy, 86(11), 2273, 2009
  20. Sun J, Wang Y, ACS Catal., 4, 1078, 2014
  21. Bhn S, Imm S, Neubert L, Zhang M, ChemCatChem, 3, 1853, 2011
  22. Jeong YS, Woo Y, Park MJ, Shin CH, Catal. Today, 352, 287, 2020
  23. Bartholomew CH, Pannell RB, J. Catal., 65, 390, 1980
  24. Zygmuntowicz J, Wiecinska P, Miazga A, Konopka K, J. Therm. Anal. Calorim., 125, 1079, 2016
  25. Gangwar J, Gupta BK, Kumar P, Tripathi SK, Srivasta AK, Dalton Trans., 43, 17034, 2014
  26. Gregg SJ, Sing KSW, Adsoprtion, Surface Area and Porosity, Academic Press Inc.: London, 1982; ISBN 9780123009500.
  27. Sing KSW, Pure Appl. Chem., 54, 2201, 1982
  28. Groen JC, Peffer LAA, Perez-Ramırez J, Microporous Mesoporous Mater., 60, 1, 2003
  29. Thommes M, Chem. Ing. Tech., 82(7), 1059, 2010
  30. Rafiani A, Aulia F, Dwiatmoko AA, Rinaldi N, Widjaya NRR, Mater. Sci. Eng., 722, 012001, 2020
  31. Kwak BS, Chem. Ind. Techno., 16(2), 132, 1998
  32. Jeong YS, Shin CH, Korean Chem. Eng. Res., 57(1), 133, 2019
  33. Turek W, Krowiak A, Appl. Catal. A: Gen., 417-418, 102, 2012
  34. Hensen EJM, Poduval DG, Degirmenci V, Ligthart M, Chen W, Mauge F, Rigutto MS, Rob van Veen JA, J. Phys. Chem. C, 116, 21416, 2012
  35. Pyen S, Hong E, Shin M, Suh YW, Shin CH, Mol. Catal., 448, 71, 2018
  36. Chen BS, Falconer JL, J. Catal., 147(1), 72, 1994
  37. Li CP, Chen YW, Thermochim. Acta, 256(2), 457, 1995
  38. Zangouei M, Moghaddam AZ, Arasteh M, Chem. Eng. Res. Bull., 14, 97, 2010
  39. Le TA, Kim TW, Lee SH, Park ED, Korean J. Chem. Eng., 34(12), 3085, 2017
  40. Iwamoto M, Horikoshi M, Hashimoto R, Shimano K, Sawaguchi T, Teduka H, Matsukata M, Catalysts, 10, 590, 2020
  41. Marino FJ, Cerrella EG, Duhalde S, Jobbagy M, Laborde MA, Int. J. Hydrog. Energy, 23(12), 1095, 1998
  42. Papakonstantinou P, Zeze DA, Klini A, McLaughlin H, Diam. Relat. Mat., 10, 119, 2001
  43. Bang S, Hong E, Baek SW, Shin CH, Catal. Today, 303, 100, 2018
  44. Baiker A, Ind. Eng. Chem. Process Des. Dev., 20, 615, 1981
  45. Sewell G, Oconnor C, Vansteen E, Appl. Catal. A: Gen., 125(1), 99, 1995
  46. Card RJ, Schmitt JL, J. Org. Chem., 46(4), 754, 1981
  47. Jeong YS, An SH, Shin CH, Korean J. Chem. Eng., 36(7), 1051, 2019