Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.59, No.1, 127-137, 2021
국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과
Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass
미세먼지 전구체인 질소산화물(NOx)에 대한 대기배출부과금 제도가 2020년부터 국내에 도입 및 시행됨에 따라 이를 저감하기 위한 경제적인 연소기술 개발은 매우 시급한 실정이다. 본 연구에서는 해외 우드펠릿 대체재로서 REC(Renewable Energy Certificates) 확보가 가능한 국내 미이용 산림 바이오매스를 연료로 하여 0.1 MWth급 순환유동층 연소 설비에서 NOx 저감을 위한 air-staging 효과를 고찰하였다. 운전 변수로는 air-staging 적용 유무, 3차 공기 공급 높이(6.4 m, 8.1 m, 9.4 m) 그리고 air-staging 비율(1차 공기:2차 공기:3차 공기=91%:9%:0%, 82%:9%:9%,73%:9%:18%) 변화이며 운전 변수에 대한 배기가스 내 NO와 CO 농도, 연소로 높이별 온도와 압력 프로파일, 포집된 비산재(fly ash) 내 미연탄소 함량과 연소효율을 분석하였다. 3차 공기를 가장 높은 9.4 m에서 공급한 air-staging 운전 시 NO 농도는 100.7 ppm으로 air-staging을 적용하지 않은 운전 조건(148.8 ppm)보다 32.3% 감소하지만 CO 농도는 오히려 52.2 ppm에서 99.8 ppm으로 91% 증가하였다. 더불어, NO 농도의 저감을 위한 환원영역과 CO 농도의 저감을 위한 산화영역 확보를 위해 3차 공기 공급 높이를 6.4 m로 유지하며 3차 공기 공급량을 늘리고 1차 공기 공급량을 낮춘 air-staging 운전 조건(73%:9%:18%)에서는 NO와 CO 농도가 각각 90.8 ppm과 66.1 ppm으로 air-staging 적용 조건 중 가장 감소되는 것을 확인하였다. 이러한 최적 운전 조건에서 연소효율 역시, air-staging을 적용하지 않은 운전 조건의 연소효율(98.3%) 보다 높은 99.3%임을 확인하였다.
Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without airstaging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.
[References]
  1. Barnes I, IEA Clean Coal Centre(2015).
  2. U.S. Environmental Protection Agency, “Nitrogen Oxides (NOx) Why and How They are Controlled,” EPA-456/F-99-006R(1999).
  3. Hill SC, Smoot DL, Prog. Energy Combust. Sci., 26, 417, 2000
  4. Easterly JL, Burnham M, Biomass Bioenergy, 10, 79, 1996
  5. Ren XH, Sun R, Meng XX, Vorobiev N, Schiemann M, Levendis YA, Fuel, 188, 310, 2017
  6. http://www.forest.go.kr/kfsweb/kfs/idx/Index.do.
  7. http://www.me.go.kr.
  8. Mahmoudi S, Baeyens J, Seville JPK, Biomass Bioenerg., 34(9), 1393, 2010
  9. Laskawiec K, Gebarowski P, Malolepszy J, Acta Energetica, 29, 58, 2016
  10. IEA, Air Staging for NOx Control (overfire air and two-stage combustion), (2018).
  11. Liu H, Chaney J, Li JX, Sun CG, Fuel, 103, 792, 2013
  12. Ke XW, Cai RX, Zhang M, Miao M, Lyu JF, Yang HR, Fuel Process. Technol., 181, 252, 2018
  13. Man CK, Gibbins JR, Witkamp JG, Zhang J, Fuel, 84(17), 2190, 2005
  14. Basu P, Chem. Eng. Sci., 54(22), 5547, 1999
  15. Reidick A, Kremer H, Symposium (International) on Combustion, 26, 3309-3315(1996).
  16. de Diego LF, Londono CA, Wang XS, Gibbs BM, Fuel, 75, 971, 1996
  17. Wang XS, Gibbs BM, Rhodes MJ, Combust. Flame, 99, 508, 1994
  18. Carroll JP, Finnan JM, Biedermann F, Brunner T, Obernberger I, Fuel, 155, 37, 2015
  19. Edvardsson E, Amand LE, Thunman H, Leckner B, Johnsson F, May 21-24, Vienna Austria, (2006).
  20. Winter F, Proceedings of the 20th international conference on fluidized bed combustion, Springer, 43-48(2010).
  21. Li J, Zhang X, Yang W, Blasiak W, International Journal of Clean Coal and Energy, 2, 13-21(2013).
  22. Fan WD, Lin ZC, Kuang JG, Li YY, Fuel Process. Technol., 91(6), 625, 2010
  23. Saikaew T, Supudommak P, Mekasut L, Piumsomboon P, Kuchonthara P, Greenhouse Gas Control, 10, 26, 2012
  24. Li JJ, Zhang M, Yang HR, Lu JF, Zhao XX, Zhang JC, Fuel Process. Technol., 150, 88, 2016
  25. Mingxin X, Shiyuan L, Wei L, Qinggang L, Energy Fuels, 29(5), 3302, 2015
  26. Zhou H, Li Y, Li N, Qiu RC, Cen K, Journal of the Energy Institute, 92, 351 (2019).
  27. Kassman H, Karlsson M, Amand LE, May 16-19, Savannah Georgia(1999).
  28. Xiao Y, Song G, Song W, Yang W, Yang Z, Lyu Q, Fuel, 269, 117394, 2020
  29. Johnsson JE, Fuel, 73, 1398, 1994
  30. Arjunwadkar A, Basu P, Acharya B, Appl. Therm. Eng., 102, 672, 2016
  31. Reza MT, Lynam JG, Uddin H, Coronella CJ, Biomass Bioenergy, 49, 86, 2013
  32. Pronobis M, Biomass Bioenerg., 28(4), 375, 2005
  33. Mun TY, Tumsa TZ, Lee UD, Yang W, Energy, 115, 954, 2016