Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 438-443, 2019
과산화수소를 이용한 Pt계 촉매의 인산 이온 피독 특성 정량 평가 방법
The Measurement Method Using Hydrogen Peroxide for Quantification of Phosphate Ion Poisoning of Pt Based Catalyst
본 연구에서는 HT-PEMFC 공기극용 Pt계열 연료극 촉매의 인산이온 피독 특성에 대한 새로운 평가 방법을 제시하였다. 이를 위하여, 기존의 전기화학적 인산이온 피독 측정법인 CV와 ORR RDE 측정법이 갖고 있는 문제점을 저감하기 위하여, 과산화수소를 Pt 촉매와의 반응물로 이용하여 고농도 인산 이온 분위기에서의 내피독성 측정값 오차를 감소시켰다. 그 결과 인산이온 농도 0.1M 이하의 저농도와 0.5M 이상의 고농도에서 인산농도 대비 전류밀도의 변화가 직선적으로 나타나, 실제 HT-PEMFC의 구동 환경과 유사한 고농도의 인산이온 분위기에서의 Pt계 인산이온 피독 정량화에 대하여 기존의 측정방법에 비해 우수함을 확인하였다.
A new measurement method is suggested to quantify the phosphate poisoning of cathodic Pt catalyst for HT-PEMFC. To do that, hydrogen peroxide was used as an indicator to reduce the error which has been occurred in conventional electrochemical measurement such as CV or ORR RDE with high concentration of phosphate ions. As a result, the current density induced from the reaction of hydrogen peroxide decomposition increased proportionally to the concentration of phosphate ion while the conventional methods show has a significant error with high concentration of phosphate ion. Thus, it is confirmed that the suggested way is superior to the conventional measurement method for the quantification of phosphate ion poisoning in an atmosphere similar to the actual operation condition of HT-PEMFC.
[References]
  1. He Q, Yang X, Chen W, Mukerjee S, Koel B, Chen S, Phys. Chem. Chem. Phys., 12, 12544, 2010
  2. Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264, 2013
  3. Kaserer S, Caldwell KM, Ramaker DE, Roth C, J. Phys. Chem. C, 117, 6210, 2013
  4. He Q, Shyam B, Nishijima M, Ramaker D, Mukerjee S, J. Phys. Chem. C, 117, 4877, 2013
  5. Park H, Lim D, Yoo SJ, Kim H, Henkensmeier D, Kim JY, Ham HC, Jang JH, Sci. Rep., 7, 7186, 2017
  6. Hsueh KL, Gonzalez ER, Srinivasan S, J. Electronchem. Soc, 131(4), 823, 1984
  7. Park J, Yang S, Chung Y, Kwon Y, Trans. of Korean Hydrogen and New Energy Society, 28(6), 669-674 (2017).
  8. Nart FC, Iwasita T, Electrochim. Acta, 37(3), 385, 1992
  9. Yang G, Chen Y, Zhou Y, Tang Y, Lu T, Electrochem. Commun., 12, 492, 2010
  10. Sun HJ, Xu JF, Fu GT, Mao XB, Zhang L, Chen Y, Zhou YM, Lu TH, Tang YW, Electrochim. Acta, 59, 279, 2012
  11. Oono Y, Sounai A, Hori M, J. Power Sources, 189(2), 943, 2009
  12. Kadiri FE, Faure R, Durand R, J. Electroanal. Chem., 301, 177, 1991
  13. Conway BE, Novak DM, J. Electrochem. Soc., 128(5), 956, 1981
  14. Deng YJ, Wiberg GKH, Zana A, Arenz M, Electrochim. Acta, 204, 78, 2016
  15. Hall SB, Khudaish EA, Hart AL, Electrochim. Acta, 44(25), 4573, 1999
  16. Atsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJJ, Phts. Chem. Chem. Phys., 14, 7384, 2012
  17. Gomez-Marin AM, Rizo R, Feliu JM, Beilstein J. Nanotechnol., 4, 956, 2013