Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 420-424, 2019
파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산
SNG Production from CO2-Rich Syngas in a Pilot Scale SNG Process
포항산업과학연구원(RIST, Research Institute of Industrial Science & Technology)-고등기술연구원(IAE, Institute for Advanced Engineering)에서 제안한 합성천연가스(Synthetic Natural Gas, SNG) 제조공정(3개의 단열반응기와 1개의 등온반응기로 구성됨)에서, 합성가스와 함께 스팀을 공급함으로써 메탄화반응과 수성가스전환 반응을 동시에 반응시켜 촉매층의 온도와 촉매 비활성화를 제어하였다. SNG 공정개발을 위해 본 연구에서는, 포항산업과학연구원에서 제조한 니켈계 촉매를 사용하여 낮은 H2/CO 비(CO2 22% 포함) 조건에서의 메탄화반응 특성을 평가하였다. 운전조건(1차 단열반응기의 H2O/CO 비, 4차 등온반응기의 운전온도 범위 등)은 이전의 연구 결과를 반영하였으며, 동일한 조건을 유지하면서 파일럿 규모의 SNG 공정을 운전하였다. 그 결과, 파일럿 규모의 SNG 공정은 안정적으로 운전되었으며, CO 전환율 100%, CH4 선택도는 96.9% 그리고 CH4 생산성은 660ml/gcat·h의 값을 얻었다.
In SNG (synthetic natural gas) process by proposed RIST(Research Institute of Industrial Science & Technology)-IAE(Institute for Advanced Engineering) (including three adiabatic reactors and one isothermal reactor), the methanation reaction and water gas shift (WGS) reaction take place simultaneously, and the supply of steam with syngas might control the temperature in catalyst bed and deactivate the catalyst. In this study for development of SNG process, the characteristics of the methanation reaction with a Ni-based catalyst by prepared RIST and using a low H2/CO mole ratio (including CO2 22%) are evaluated. The operating conditions (H2O/CO ratio of the 1st adiabatic reactor, operating temperature range of 4th isothermal reactor, etc.) were reflected the results from previous studies and in the same condition a pilot scale SNG process is carried out. As a results, the pilot scale SNG process is stable and the CO conversion and CH4 selectivity are 100% and 96.9%, respectively, while the maximum CH4 productivity is 660 ml/gcat·h.
[References]
  1. Nagase S, Takami S, Hirayama A, Hirai Y, Catal. Today, 45(1-4), 393, 1998
  2. Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel, 89(8), 1763, 2010
  3. Kang SH, Kim JH, Kim HS, Ryu JH, Jeong KJ, Yoo YD, Kim KJ, Clean Technol., 20(1), 57, 2014
  4. Gassner M, Marechal F, Biomass Bioenerg., 33(11), 1587, 2009
  5. Kang SH, Bae JW, Sai Prasad PS, Oh JH, Jun KW, Song SL, Min KS, J. Ind. Eng. Chem., 15(5), 665, 2009
  6. Kang SH, Woo KJ, Bae JW, Jun KW, Kang Y, Korean J. Chem. Eng., 26(6), 1533, 2009
  7. Haldor Topsoe, “From Coal to Substitute Natural gas Using TREMP,” Technical report, Haldor Topsoe(2008).
  8. Kim JH, Kang SH, Ryu JH, Lee SK, Kim SH, Kim MH, Lee DY, Yoo Y, Byun C, Lim H, Korean Chem. Eng. Res., 49(4), 491, 2011
  9. Kim S, Yoo Y, Kang S, Ryu J, Kim J, Kim M, Koh D, Lee H, Kim G, Kim H, Clean Technol., 19(2), 156, 2013
  10. Hoehlein B, Menzer R, Range J, Appl. Catal., 1(3), 125, 1981
  11. Vitasari CR, Jurascik M, Ptasinski KJ, Energy, 36(6), 3825, 2011
  12. Rabou PLM, Bos L, Appl. Catal. B: Environ., 111-112, 456, 2012
  13. van der Meijden CM, Veringa HJ, Rabou LPLM, Biomass Bioenerg., 34(3), 302, 2010
  14. Mangena SJ, Bunt JR, Waanders FB, Baker G, Fuel, 90(1), 167, 2011
  15. Tian DY, Liu ZH, Li DD, Shi HL, Pan WX, Cheng Y, Fuel, 104, 224, 2013
  16. Bassano C, Deiana P, Pacetti L, Verdone N, Fuel, 161, 355, 2015
  17. Baik JH, Yoo YD, Kang SH, Koh DJ, Kim JH, Kim SH, Ryu JH, KR. Patent No. 1020120153905(2012).
  18. Kim JH, Kang SH, Young DY, Baik JH, Koh DJ, Theor. Appl. Chem. Eng., 17(2), 1688, 2011
  19. Kim JH, Ryu JH, Kang SH, Yoo YD, Kim JW, Go DJ, Jung M, Lee JM, Clean Technol., 24(2), 99, 2018