Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 368-371, 2019
First-Principles Study on Thermodynamic Stability of UO2 with He Gas Incorporation via Alpha-Decay
Using first principles calculations we investigated the thermomechanical stability of spent nuclear fuels (SNF), especially how mechanical properties of UO2, such as, bulk, shear and Young’s moduli and Poisson’s ratio vary through alpha-decay of U into Th with generation of He gas. Our results indicate that substitution of U by Th through alpha decay (U1-xThxO2) does not significantly affect the stability of the grain in a fuel matrix. In addition, we studied the transport properties of He in and boundaries of the U1-xThxO2 grain. Helium preferentially resides at the grain boundaries through diffusion. Our study can contribute to substantial reduction of environmentally risk and enhancement of our sustainability by safe control of radioactive materials.
[References]
  1. Hogselius P, Energy Policy, 37(1), 254, 2009
  2. Bunn M, Holdren JP, Fetter S, van Der Zwaan B, Nucl. Technol., 150(3), 209, 2005
  3. Ewing R, Weber RW, Clinard F, Prog. Nucl. Energy, 29, 63, 1995
  4. Gryaznov D, Heifets E, Kotomin E, Phys. Chem. Chem. Phys., 11(33), 7241, 2009
  5. Yun Y, Eriksson O, Oppeneer PM, J. Nucl. Mater., 385(3), 510, 2009
  6. Liu XY, Andersson D, J. Nucl. Mater., 462, 8, 2015
  7. Govers K, Lemehov S, Hou M, Verwerft M, J. Nucl. Mater., 395, 131, 2009
  8. Dabrowski, Ludwik, Marcin S, J. Alloy. Compd., 615, 598, 2014
  9. Liu XY, Andersson D, J. Nucl. Mater., 498, 373, 2018
  10. Thompson AE, Wolverton C, Phys. Rev. B, 84(13), 134111, 2011
  11. Lederer C, Hollander J, Perlman S, “Table of Isotopes 6th edn,” Wiley, New York, 5-6(1968).
  12. Olander DR, “Fundamental Aspects of Nuclear Reactor Fuel Elements,” California Univ., Berkeley (USA). Dept. of Nuclear Engineering, 1976.
  13. Ewing RC, Nat. Mater., 14(3), 252, 2015
  14. Nerikar PV, Rudman K, Desai TG, Byler D, Unal C, McClellan KJ, Phillpot SR, Sinnott SB, Peralta P, Uberuaga BP, Stanek CR, J. Am. Ceram. Soc., 94(6), 1893, 2011
  15. Kresse G, Furthmuller J, Comput. Mater. Sci., 6(1), 15, 1996
  16. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77(18), 3865, 1996
  17. Perdew JP, Burke K, Int. J. Quantum. Chem., 57(3), 309, 1996
  18. Blochl PE, Phys. Rev. B, 50(24), 17953, 1994
  19. Brincat NA, Molinari M, Parker SC, Allen GC, Storr MT, J. Nucl. Mater., 456, 329, 2015
  20. Dorado B, Freyss M, Amadon B, Bertolus M, Jomard G, Garcia P, J. Phys. Condens. Matter, 25(33), 333201, 2013
  21. Meredig B, Thompson A, Hansen HA, Wolverton C, Van de Walle A, Phys. Rev. B, 82(19), 195128, 2010
  22. Idiri M, Bihan TL, Heathman S, Rebizant J, Phys. Rev. B, 70, 014113, 2004
  23. Yun YS, Oppeneer PM, Kim H, Park K, Acta Metall., 57(5), 1655, 2009
  24. Yun Y, Eriksson O, Oppeneer PM, J. Nucl. Mater., 385(1), 72, 2009
  25. Sanati M, Albers RC, Lookman T, Saxena A, Phys. Rev. B, 84, 014116, 2011
  26. Sisodia P, Dhoble A, Verma M, Phys. Status. Solidi. B, 163(2), 345, 1991
  27. Klein CA, Cardinale GF, Diam. Relat. Mater, 2(5-7), 918, 1993
  28. Munro RG, NIST. No. NIST Interagency/Internal Report (NISTIR)-6853(2002).
  29. Kanchana V, Vaitheeswaran G, Svane A, Delin A, J. Phys. Condens. Matter, 18(42), 9615, 2006
  30. Jang BG, Hyun SI, Kim MH, Kaviany M, Shim JH, EPL, 112(1), 17012, 2015
  31. Fritz I, J. Appl. Phys., 47(10), 4353, 1976
  32. Macedo P, Capps W, Wachtman J, J. Am. Ceram. Soc., 47(12), 651, 1964