Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.57, No.3, 338-343, 2019
고분자전해질 연료전지에서 고분자막을 통한 물의 이동
Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells
고분자전해질 연료전지에서 전해질막의 물이동과 함수율은 고분자막의 성능에 많은 영향을 미친다. 본 연구에서는 간단한 방법에 의해 물이동에 관한 고분자막의 물성(전기삼투계수, 물 확산계수)을 측정하고 이들을 이용해 막을 통한 물의 이동량과 이온전도도를 모델식에 의해 모사한 후 실험값과 비교하였다. 물이동의 구동력은 전기삼투와 확산만이라고 본 1차원 정상상태 지배방정식을 매트랩으로 수치해석하였다. 144 μm 두께의 고분자막의 전기삼투계수를 수소 펌핑셀에서 구한 결과 1.11을 얻었다. 물확산계수를 상대습도의 함수로 나타냈고 물확산에 대한 활성화에너지는 2,889kJ/mol.K였다. 이들 계수를 적용해 모사한 물이동량과 이온전도도 결과는 실험값과 잘 일치함을 보였다.
The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of 144 μm thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was 2,889 kJ/mol.K. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.
[References]
  1. Wilkinson DP, St-Pierre J, Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England (2003).
  2. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S, J. Phys. Chem., 95, 6040, 1991
  3. Fuller T, Newman J, J. Electrochem. Soc., 140(5), 1218, 1993
  4. Motupally S, Becker AJ, Weidner JW, J. Electrochem. Soc., 147(9), 3171, 2000
  5. Karpenko-Jereb L, Innerwinkler P, Kelterer AM, Sternig C, Fink C, Prenninger P, Tatschl R, Int. J. Hydrog. Energy, 39(13), 7077, 2014
  6. Hsu WY, Gierke TD, J. Membr. Sci., 13, 307, 1983
  7. Fimrite J, Struchtrup H, Djilali N, J. Electrochem. Soc., 152, 1804, 2005
  8. Cwirko EH, Carbonell RG, J. Membr. Sci., 48, 155, 1990
  9. Zabolotsky VI, Nikonenko VV, J. Membr. Sci., 79, 181, 1993
  10. Berezina NP, Karpenko LV, Colloid J., 62, 676, 2000
  11. Carnes B, Djilali N, Electrochim Acta, 52, 1038, 2006
  12. Berg P, Promislow K, Pierre J, Stumper J, Wetton B, J. Electrochem. Soc., 151, 341, 2004
  13. Kulikovsky AA, Electrochim Acta, 49, 5187, 2004
  14. Hwang B, Chung HB, Lee MS, Lee DH, Park K, Korean Chem. Eng. Res., 54(5), 593, 2016
  15. Ye XH, Wang CY, J. Electrochem. Soc., 154(7), B676, 2007
  16. Ju HC, Wang CY, Cleghorn S, Beuscher U, J. Electrochem. Soc., 152(8), A1645, 2005
  17. Zawodzinski TA, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S, J. Electrochem. Soc., 140, 1981, 1993
  18. Nguyen TV, White RE, J. Electrochemical Soc., 140(8), 2178, 1993
  19. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290, 2018