Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.6, 856-863, 2018
순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응
Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions
순산소 순환유동층 보일러에서 탈황을 위해 이용되는 석회석의 재탄산화 거동을 분석하기 위하여, 상용 순환유동층 보일러에서 이용되는 석회석 4종의 재탄산화 반응 특성을 열중량분석기(TGA-N1000)에서 고농도의 CO2 가스를 이용하여 분석하였다. 생석회의 재탄산화 반응은 반응온도(600~900 °C), 석회석의 CaCO3 함량(77~95%) 등의 조건에 따른 질량 변화를 통해 고찰되었다. 600~800 °C의 온도 영역에서는 반응 온도가 증가함에 따라 전환율이 증가하였고, 850~900 °C 에서는 반응 온도가 증가함에 따라 전환율이 감소하는 경향이 발견되었다. CaCO3 함량의 경우, 870 °C의 반응온도에서 뚜렷한 전환율의 차이를 보였다. 또한 기-고체반응속도 모델들에 적용하여 석회석의 재탄산화 반응을 모사하는 반응속도식을 제시하였다.
In order to investigate the re-carbonation behaviors of limestones in an oxy-circulating fluidized bed combustor (Oxy-CFBC), the re-carbonation characteristics of domestic 4 different limestone samples were analyzed in a thermogravimetric analyzer (TGA-N1000) with the higher concentration of CO2. Effect of reaction temperature (600~900 °C) and CaCO3 content (77~95%) of limestones were determined and the mass change of the CaO was observed. Under the temperature of 800 °C, the conversion rate increased with increasing reaction temperature. However, the conversion rate decreased with increasing reaction temperature over 800 °C. In the case of CaCO3 content, the conversion was remarkably different at 870 °C. In addition, reaction rate equations for simulating the re-carbonation of limestone by using gas solid reaction models were proposed in this study.
[References]
  1. Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115, 2018
  2. Shin JH, Lee LS, Lee SH, Korean Chem. Eng. Res., 54(4), 501, 2016
  3. Lee SH, Kim JM, Eom WH, Ryi SK, Park JS, Baek LH, Chem. Eng. J., 207-208, 521, 2012
  4. Lee SH, Park ST, Lee R, Hwang JH, Sohn JM, Korean J. Chem. Eng., 33(12), 3523, 2016
  5. Garcia-Labiano F, Rufas A, de Diego LF, de las Obras-Loscertales M, Gayan P, Abad A, Adanez J, Fuel, 90(10), 3100, 2011
  6. Jia L, Tan Y, Anthony EJ, Energy Fuels, 24, 910, 2010
  7. Tian L, Yang W, Chen Z, Wang X, Yang H, Chen H, J. Energy Inst., 89(2), 264, 2016
  8. Li W, Li S, Xu M, Wang X, J. Energy Inst., 91(3), 358, 2018
  9. Liljedahl G, Turek D, Nsakala N, Mohn N, Fout T, In:Proceedings of the 31st International Technical Conference on Coal Utilization & Fuel Systems.
  10. Ramezani M, Tremain P, Doroodchi E, Moghtaderi B, E5nergy Procedia, 114, 259, 2017
  11. Shin JH, Kim YR, Kook JW, Kwak IS, Park KI, Lee JM, Lee SH, Appl. Chem. Eng., 26(5), 557, 2015
  12. Lee SH, Lee JM, KEPCO J., 2, 211, 2016
  13. Jeong S, Lee KS, Keel SI, Yun JH, Kim YJ, Kim SS, Fuel, 161, 1, 2015
  14. Chen HC, Zhao CS, Chem. Eng. Technol., 39(6), 1058, 2016
  15. Wang LY, Li SY, Eddings EG, Ind. Eng. Chem. Res., 54(14), 3548, 2015
  16. Kochel A, Cieplinska A, Szyrnanek A, Energy Fuels, 29(1), 331, 2015
  17. Wang CB, Jia LF, Tan YW, Anthony EJ, Fuel, 87(7), 1108, 2008
  18. Wang CB, Jia LF, Tan YW, Chem. Eng. Technol., 34(10), 1685, 2011
  19. Symonds RT, Lu DY, Macchi A, Hughes RW, Anthony EJ, Chem. Eng. Sci., 64(15), 3536, 2009
  20. Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092, 2017
  21. Wen C, Ind. Eng. Chem., 60, 34, 1968
  22. Ishida M, Wen C, AIChE J., 14, 311, 1968
  23. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25(1), 1985
  24. Sun P, Grace JR, Lim CJ, Anthony EJ, Chem. Eng. J., 63, 47, 2008
  25. Abanades JC, Alvarez D, Energy Fuels, 17(2), 308, 2003
  26. de las Obras-Loscertales M, de Diego LF, Garcia-Labiano F, Rufas A, Abad A, Gayan P, Adanez J, Fuel, 137, 384, 2014
  27. Kim YB, Gwak YR, Keel SL, Yun JH, Lee SH, Che. Eng. J., https://doi.org/10.1016/j.cej.2018.08.036.