Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.56, No.4, 561-567, 2018
석유계 피치를 사용한 실리콘/탄소 음극소재의 전기화학적 특성
Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch
본 연구에서는 리튬이온전지 실리콘 음극소재의 사이클 안정성 향상을 위해 실리콘/탄소 음극소재의 전기화학적 특성을 조사하였다. Tetraethyl orthosilicate (TEOS) 로부터 스토버법 및 마그네슘 열 환원법을 통하여 다공성 실리콘을 제조하고, 제조된 다공성 실리콘과 피치의 질량비에 따라 실리콘/탄소 음극소재를 제조하였다. 실리콘/탄소 음극소재의 물리적 특성은 XRD와 TGA를 통해 분석하였다. 1.0M LiPF6 (EC : DEC = 1 : 1 vol%) 전해액에서 실리콘/탄소 음극소재의 충·방전 사이클, 율속, 순환전압전류, 임피던스 테스트를 통해 전기화학적 특성을 조사하였다. 제조된 실리콘/탄소 음극소재 실리콘 : 탄소 = 5 : 95 일때 453 mAh/g의 향상된 용량을 나타내었으며, 사이클 성능 또한 두 번째 사이클 이후 30 사이클까지 매우 우수한 사이클 안정성을 나타냄을 확인하였다.
In this study, the electrochemical characteristics of Silicon/Carbon anode materials were analyzed to improve the cycle stability of silicon as an anode materials of lithium ion battery. Porous silicon was prepared from TEOS by the st.ber method and the magnesiothermic reduction method. Silicon/Carbon anode materials were synthesized by varying the mass ratio between porous silicon and pitch. Physical properties of the prepared Silicon/Carbon anode materials were analyzed by XRD and TGA. Also the electrochemical performances of Silicon/Carbon anode materials were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of LiPF6 dissolved in organic solvents (EC : DEC = 1 : 1 vol%). The Silicon/ Carbon anode composite (silicon : carbon = 5 : 95 in weight) has better capacity (453 mAh/g) than those of other composition cells. The cycle performance has an excellent capacity retention from 2nd cycle to 30th cycle.
[References]
  1. Kobayashi N, Inden Y, Endo M, J. Power Sources, 326, 235, 2016
  2. Bao Q, Huang YH, Lan CK, Chen BH, Duh JG, Electrochim. Acta, 173, 82, 2015
  3. Yang Y, Wang Z, Yan G, Guo H, Wang J, Li X, Zhou Y, Zhou R, Ceram. Int., 43, 8590, 2017
  4. Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195, 2017
  5. Kim H, Seo M, Park MH, Cho J, Angew. Chem.-Int. Edit., 49, 2146, 2010
  6. Sohn M, Kim DS, Park HI, Kim JH, Kim H, Electrochim. Acta, 196, 197, 2016
  7. Jung MZ, Park JY, Lee JD, Korean Chem. Eng. Res., 54(1), 16, 2016
  8. Yang Y, Wang Z, Zhou Y, Guo H, Li X, Mater. Lett., 199, 84, 2017
  9. Ma Y, Tang H, Zhang Y, Li Z, Zhang X, Tang Z, J. Alloy. Compd., 704, 599, 2017
  10. Park JB, Lee KH, Jeon YJ, Lim SH, Lee SM, Electrochim. Acta, 133, 73, 2014
  11. Luo ZJ, Fan DD, Liu XL, Mao HY, Yao CF, Deng ZY, J. Power Sources, 189(1), 16, 2009
  12. Kim BH, Kim JH, Kim JG, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 45, 99, 2017
  13. Kim BH, Kim JH, Kim JG, Bae MJ, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 41, 1, 2016
  14. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62, 1968
  15. Lee HY, Lee JD, Korean Chem. Eng. Res., 54(4), 459, 2016
  16. Wang MS, Fan LZ, Huang MA, Li JH, Qu XH, J. Power Sources, 219, 29, 2012
  17. Jeong S, Li XL, Zheng JM, Yan PF, Cao RG, Jung HJ, Wang CM, Liu J, Zhang JG, J. Power Sources, 329, 323, 2016
  18. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y, Nano Lett., 11, 2949, 2011
  19. Yoon T, Nguyen CC, Seo DM, Lucht BL, J. Electrochem. Soc., 162(12), A2325, 2015
  20. Liang K, Yang H, Guo W, Du J, Tian L, Wen X, J. Alloy. Compd., 735, 441, 2018
  21. Wu JJ, Bennett WR, Energytech, 1-5(2012).