Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.4, 514-519, 2017
활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구
Adsorption Equilibrium, Kinetic and Thermodynamic Parameter Studies of Acid Green 27 Using Activated Carbon
활성탄을 사용하여 흡착제의 양, pH, 초기농도, 접촉시간과 온도를 흡착변수로 acid green 27 염료의흡착특성을 조사하였다. 흡착평형자료는 Freundlich와 Langmuir 등온식을 사용하여 해석하였는데, Freundlich 식이더 좋은 일치도를 나타냈다. 평가된 Freundlich 분리계수(1/n=0.293~0.387)로부터 활성탄에 의한 acid green 27의 흡 조작이 효과적인 처리방법이 될 수 있음을 알았다. 흡착속도실험 결과는 유사이차 반응속도식에 잘 맞았으며, 유사이 속도상수(k2)값은 acid green 27 초기농도가 증가할수록 감소하였다. 활성화에너지값(10.457 kJ/mol)과 표준엔탈피변 값(76.946 kJ/mol)으로 흡착공정이 물리흡착이고 흡열반응임을 알았다. 298~318 K 범위에서 Gibbs 자유에너지값은 온가 올라갈수록 감소하였기 때문에 흡착반응은 온도가 올라갈수록 더 자발적으로 일어났다.
Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant (k2) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.
[References]
  1. Robinson T, Chandran B, Nigam P, Water Res., 36, 2824, 2002
  2. Qi JR, Li Z, Guo YP, Xu HD, Mater. Chem. Phys., 87(1), 96, 2004
  3. Attia AA, Girgis BS, Fathy NA, Dyes Pigment., 76, 282, 2008
  4. Secula MS, Cagnon B, Crettescu I, Diaconu M, Petrescu S, St. Cerc. St. CICBIA, 12(4), 307, 2011
  5. Hameed BH, Ahmad AA, Aziz N, Chem. Eng. J., 133(1-3), 195, 2007
  6. Jailkumar V, Int'l. J. Chem., 1, 1, 2009
  7. Ansari R, Seyghali B, Eur. Chem. Bull., 2, 499, 2013
  8. Parimalam R, Raj V, Sivakumar P, J. Chem., 9(4), 1683, 2012
  9. Ciobanu G, Harja M, Rusu L, Mocanu AM, Luca C, Korean J. Chem. Eng., 31(6), 1021, 2014
  10. Lee JJ, Korean Chem. Eng. Res., 53(1), 64, 2015
  11. Ashraf MA, Hussain M, Mahmood K, Wajid A, Alias MYY, Yusoff I, Desalin. Water Treat., 51(22), 4530, 2013
  12. Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77, 2011
  13. Lee JJ, Korean Chem. Eng. Res., 54(2), 255, 2016
  14. Vargas AMM, Cazetta AL, Martins AC, Moraes JCG, Garcia EE, Gauze GF, Costa WF, Almedia VC, Chem. Eng. J., 181-182, 243, 2012
  15. Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365, 2009
  16. Mital A, J. Hazard. Mater., B133, 196, 2006
  17. Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590, 2007
  18. Peng XM, Hu XJ, Fu DF, Lam FLY, Appl. Surf. Sci., 294, 71, 2014