Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.3, 436-442, 2017
철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향
Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst
Fischer-Tropsch 합성(F-T 합성)은 석탄, 바이오매스, 천연가스 등을 개질하여 얻은 합성 가스(CO, H2)를 촉매를 이 용하여 탄화수소로 전환 하는 기술이다. Fischer-Tropsch 합성에 이용되는 촉매는 활성 금속, 조촉매, 지지체로 구성되 는데 이들의 종류와 조성은 반응의 활성 및 생성물 선택도에 영향을 미친다. 본 연구에서는 γ Al2O3와 SiO2 혼합 지지 체의 조성이 Fiscsher-Tropsch 반응의 활성과 생성물 선택도에 미치는 영향을 알아 보기위해, γ Al2O3/SiO2 혼합 지지 체를(100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) 이용하여 함침(impregnation)법으로 철 촉매를 제조하 였다. 촉매의 물리적 특성은 질소 물리 흡착 법과 X-선 회절 분석법을 통해 분석 하였고, 고정층 반응 에서 Fischer- Trosch 반응을 300 °C, 20 bar에서, 60시간 동안 수행 하였다. 촉매의 물리적 특성 분석 결과 촉매의 BET 표면적은 γ-Al2O3의 조성이 감소함에 따라 감소하였으며, 촉매 기공의 부피 및 평균 크기는 지지체 조성이 γ-Al2O3/SiO2 (50/50 wt%)인 경 우를 제외 하고 증가하는 경향을 보였다. 또한, X-선 회절 분석법을 통해 α-Fe2O3의 입자 크기를 계 한 결과 γ-Al2O3 의 조성이 감소함에 따라 입자 크기가 감소 하였다. Fischer-Tropsch 합성 결과 γ-Al2O3의 조성이 소함에 따라 CO 전환율은 감소 하였으며, C1-C4의 선택도는 γ-Al2O3의 조성이 25 wt%일 때 까지 감소하였으며 이와 반대로, C5+의 선택도는 γ-Al2O3의 조성이 25 wt%일 때 까지 증가 하였다.
Fischer-Tropsch synthesis is the technology of converting a syngas (CO+H2) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using γ-Al2O3/SiO2 mixed support (100/0 wt%, 75/25 wt%, 50/ 50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of γ-Al2O3/SiO2 mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by N2 physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at 300 °C, 20bar in a fixed bed reactor for 60h. According to the results of the N2 physical adsorption analysis, the BET surface area decreases as the composition of γ-Al2O3 decreases, and the pore volume and pore average diameter increase as the composition of γ- Al2O3 decreases except for the composition of γ-Al2O3/SiO2 of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of α-Fe2O3 decreases as the composition of γ-Al2O3 decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of γ-Al2O3 decreases, and the selectivity of C1-C4 decreases until the composition of γ-Al2O3 was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of γ Al2O3 is 25 wt%.
[References]
  1. Kim YH, Koo KY, Song IK, Korean Chem. Eng. Res., 47(6), 700, 2009
  2. Ryu SH, Song JC, Lee WY, Korean Chem. Eng. Res., 27(4), 489, 1989
  3. Na J, Jung I, Kshetrimayum KS, Park S, Park C, Han C, Korean Chem. Eng. Res., 52(6), 826, 2014
  4. Li TZ, Wang HL, Yang Y, Xiang HW, Li YW, Fuel Process. Technol., 118, 117, 2014
  5. Kumabe K, Sato T, Matsumoto K, Ishida Y, Hasegawa T, Fuel, 89(8), 2088, 2010
  6. Al-Dossary M, Fierro JLG, Appl. Catal., 499, 109, 2015
  7. Khiet M, Thomas E, Elderb HG, Leslie HG, James JS, Catal. Commun., 65, 76, 2015
  8. Koo HM, Han GY, Bae JW, “Fischer-Tropsch Synthesis on the Cobalt Impregnated Catalyst Using Carbon-coated Ni/ SiO2,” 33, 1565-1570(2016).
  9. Kim CU, Kim YS, Chae HJ, Jeong KE, Jeong SY, Jun KW, Lee KY, Korean J. Chem. Eng., 27(3), 777, 2010
  10. Li SZ, Krishnamoorthy S, Li AW, Meitzner GD, Iglesia E, J. Catal., 206(2), 202, 2002
  11. Luo MS, Davis BH, Fuel Process. Technol., 83(1-3), 49, 2003
  12. Eliason SA, Bartholomew CH, Appl. Catal., 186, 229, 1999
  13. Gaube J, Klein HF, Appl. Catal., 350, 126, 2008
  14. Ali S, Zabidi NAM, Subbarao D, J. Fuel Chem. Tech., 40, 48, 2012
  15. Tauster SJ, Fung SC, Baker RTK, Horsley JA, Science, 211, 1121, 1981
  16. Bond GC, Platinum Metals Rev., 27, 16, 1983
  17. Tauster SJ, Accounts Chem. Res., 20, 390, 1987
  18. Schepers FJ, van Senden JG, van Broekhoven EH, Ponec V, J. Catal., 94, 400, 1985
  19. Colmenares JC, Magdziarz A, Aramendia MA, Marinas A, Marinas JM, Urbano FJ, Navio JA, Catal. Commun., 16, 1, 2011
  20. Wielersa AFH, Kocka AJHM, Hopa CECA, Geus JW, van Der Kraan AM, J. Catal., 117(1), 1, 1989
  21. Kolk B, Albers A, Appl. Catal., 37, 57, 1988
  22. Jin YM, Datye AK, J. Catal., 196(1), 8, 2000
  23. Rankin JL, Bartholomew CH, J. Catal., 100, 526, 1986
  24. Lund CRF, Dumesic JA, J. Catal., 76, 93, 1982
  25. Keyvanloo K, Hecker WC, Woodfield BF, Bartholomew CH, J. Catal., 319, 220, 2014