Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.2, 258-263, 2017
벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가
Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst
본 연구에서는 글루코스 산화효소(glucose oxidase, GOx), 고분자인 폴리에틸렌이민(polyethyleneimine, PEI), 카본나노튜브(carbon nanotube, CNT)와 벤조퀴논(benzoquinone, BQ)을 이용하여 글루코스 바이오연료전지를 위한 바이오촉매를 합성하였다. 이를 위해, 지지체인 PEI/CNT 복합체에 BQ를 정전기적 인력을 통해 물리적으로 포집한 뒤, GOx를 담지시켜 합성하였다. 이는 기존에 전자 매개체로서 전해질에 풀어서 사용했던 BQ를 전해질이 아닌 촉매 내에 포집하여 촉매를 구성하였다는 개선점이 크며, 그 결과, BQ가 포집되지 않은 촉매 대비, 1.9배 상승한 34.16 μA/cm2의 최대전류밀도를 얻음을 통해 촉매활성이 개선되었음을 증명하였고, 바이오연료전지의 산화극 촉매로 이용 시, BQ가 포집되지 않은 촉매를 이용한 바이오연료전지에 비해 1.2배 상승한 0.91 mW/cm2의 최대출력밀도를 얻었다. 이를 통해 바이오연료전지의 산화극을 위한 촉매로서 GOx와 함께 담지된 매개체 BQ를 포함한 촉매 제조 가능성을 확인하였다.
In this study, we synthesized biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of p-benzoquinone (BQ) that was considered anodic catalysts of enzymatic biofuel cell (EBC). For doing this, PEI/CNT supporter was bonded with BQ by physical entrapping method stemmed from electrostatic attractive force ([BQ/PEI]/CNT). In turn, GOx moiety was further immobilized on the [BQ/PEI]/CNT to form GOx/[BQ/PEI]/CNT catalyst. This catalyst has a special advantage in that the BQ that has been usually dissolved into electrolyte was immobilized on supporter. According to the electrochemical analysis, maximum current density of the GOx/[BQ/PEI]/CNT catalyst was 1.9 fold better than that of the catalyst that did not entrap BQ with the value of 34.16 μA/cm2, verifying that catalytic activity of the catalyst was enhanced by adoption of BQ. Also, when it was used as anodic catalyst of the EBC, its maximum power density was 1.2 fold better than that of EBC using the catalyst that did not entrap BQ with the value of 0.91 mW/cm2. Based on such results, it turned out that the GOx/[BQ/PEI]/CNT catalyst was promising and viable as anodic catalyst of EBC.
[References]
  1. Lee SH, Kim YS, Chu CH, Na IC, Lee JH, Park KP, Korean Chem. Eng. Res., 54(2), 171, 2016
  2. Lee SH, Hwang BC, Lee HR, Kim YS, Chu CH, Na IC, Park KP, Korean Chem. Eng. Res., 53(6), 667, 2015
  3. Wilson R, Biosens. Bioelectron., 7, 165, 1992
  4. Ivnitski D, Artyushkova K, Rincon RA, Atanassov P, Luckarift HR, Johnson GR, Small, 4(3), 357, 2008
  5. Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867, 2004
  6. Van Nguyen K, Minteer SD, Chem. Commun., 51(66), 13071, 2015
  7. Osadebe I, Conghaile PO, Kavanagh P, Leech D, Electrochim. Acta, 182, 320, 2015
  8. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197, 2015
  9. Chung Y, Hyun K, Kwon Y, Nanoscale, 8, 1161, 2016
  10. Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8, 9201, 2016
  11. Mandler D, Kaminski A, Willner I, Electrochim. Acta, 37(15), 2765, 1992
  12. Wang J, Chem. Rev., 108(2), 814, 2008
  13. Laviron E, J. Electroanal. Chem., 101, 19, 1979
  14. Kamin RA, Wilson GS, Anal. Chem., 52(8), 1198, 1980
  15. Ayato Y, Suganuma T, Seta H, Yamagiwa K, Shiroishi H, Kuwano J, J. Electrochem. Soc., 162(14), F1482, 2015