Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.55, No.2, 201-213, 2017
유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학
Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer
물이 포함된 원유는 oil separator 를 거쳐 물이 제거된다. 본 연구의 목적은 공기-물-기름 3상 혼합물에 대한 3차원 oil separator 의 분리성능을 예측하기 위하여 Eulerian 전산유체역학(CFD: computational fluid dynamics) 모델을 개발하는 것이다. 비압축성, 등온, 비정상상태 CFD 모델식은 공기상을 연속상으로, 물과 기름상을 분산상으로 정의하며, 운동량 보존식은 항력(drag force), 양력(lift force), 다공성매체 저항력을 포함한다. 또한, 난류현상으로 standard k-ε 모델이 이용된다. 물과 기름 출구압은 oil separator 의 액위를 결정하는 중요한 인자이며, 정상운전상태 액위 25 cm를 맞추기 위하여 측정압은 각각 6.3 kPa, 5.1 kPa으로 결정되었다. 시간에 따른 공기, 물, 기름의 부피분율의 변화를 조사하였고, 정상상태에 도달하였을 때, 물과 기름상의 침강속도를 oil separator의 종축 길이에 따라 분석하였다. 본 연구에서 제시된 CFD 모델로부터 얻은 oil separator의 기름분리성능은 99.85%이며, 실험값과 거의 일치하였다. 비교적 단순한 이 CFD 모델은 향후 oil separator의 구조를 변경하거나, 최적운전조건을 찾기 위하여 유용하게 사용될 수 있을 것이다.
Water is removed from crude oil containing water by using oil separator. This study aims to develop a three-dimensional (3D) Eulerian computational fluid dynamics (CFD) model to predict the separation efficiency of airwater-oil separator. In the incompressible, isothermal and unsteady-state CFD model, air is defined as continuous phase, and water and oil are given as dispersed phase. The momentum equation includes the drag force, lift force and resistance force of porous media. The standard k-ε model is used for turbulence flow. The exit pressures of water and oil play an important role in determining the liquid level of the oil separator. The exit pressures were identified to be 6.3 kPa and 5.1 kPa for water and oil, respectively, to keep a liquid level of 25 cm at a normal operating condition. The time evolution of volume fractions of air, water and oil was investigated. The settling velocities of water and oil along the longitudinal separator distance were analyzed, when the oil separator reached a steady-state. The oil separation efficiency obtained from the CFD model was 99.85%, which agreed well with experimental data. The relatively simple CFD model can be used for the modification of oil separator structure and finding optimal operating conditions.
[References]
  1. Mohayeji M, Farsi M, Rahimpour MR, Shariati A, J. Taiwan Inst. Chem. Eng., 60, 76, 2016
  2. Li JQ, Gu YG, Sep. Purif. Technol., 42(1), 1, 2005
  3. Zolfaghari R, Fakhru'l-Razi A, Abdullah LC, Elnashaie SSEH, Pendashteh A, Sep. Purif. Technol., 170, 377, 2016
  4. Lu H, Yang Q, Xu X, Wang HL, Chem. Eng. Technol., 39(2), 255, 2016
  5. Mino Y, Kagawa Y, Matsuyama H, Ishigami T, AIChE J., 62(7), 2525, 2016
  6. Xie W, Li R, Lu X, Han P, Gu S, Korean J. Chem. Eng., 32(4), 643, 2015
  7. Kharoua N, Khezzar L, Saadawi H, Amer. J. Fluid Dyn., 3(4), 101, 2013
  8. ACS, “Liquid-Liquid Coalescer Design Manual,” ACS Industries, Houston(2014).
  9. Bansal S, von Arnim V, Stegmaier T, Planck H, J. Hazard. Mater., 190(1-3), 45, 2011
  10. Lu H, Yang Q, Liu S, Xie LS, Wang HL, Sep. Purif. Technol., 159, 50, 2016
  11. Shin C, Chase GG, AIChE J., 50(2), 343, 2004
  12. Cai XL, Chen JQ, Liu ML, Ji YP, An S, Sep. Purif. Technol., 176, 134, 2017
  13. Lim YI, Korean Chem. Eng. Res., 51(1), 10, 2013
  14. Laleh AP, Svrcek WY, Monnery WD, Can. J. Chem. Eng., 90(6), 1547, 2012
  15. Kim BJ, Kim SY, Roh CS, Lee YH, J. Fluid Mech., 19(4), 48, 2016
  16. Al-Yaari MA, Abu-Sharkh BF, Asian Trans. Eng., 1, 68, 2011
  17. Kharoua L, Khezzar L, Saadawi HNH, “Application of CFD to Debottleneck Production Separators in a Major Oil Field in the Middle East,” SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, October 8-10, 2012, San Antonio, Texas, USA, pp. SPE-158201(2012).
  18. Kharoua N, Khezzar L, Saadawi HNH, “Using CFD to Model the Performance of Retrofit Production Separators in Abu Dhabi,” SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, October 8-10, 2012, San Antonio, Texas, USA, pp. SPE-161521(2012).
  19. Orciuch W, Makowski L, Moskal A, Gradon L, Chem. Eng. Sci., 68(1), 227, 2012
  20. Tamayol A, Bahrami M, “Transverse Permeability of Fibrous Porous Media,” Proceedings of the 3rd International Conference on Porous Media and Its Applications in Science and Engineering (ICPM3), Engineering Conferences International, June 20-25, 2010, Montecatini, Italy, pp. 1-8(2010).
  21. Weber LJ, Cherian MP, Allen ME, Muste M, Headloss Characteristics for Perforated Plates and Flat Bar Screesns, 1st ed., Iowa Institute of Hydraulic Engineering, The University of Iowa, Iowa(2000).
  22. Tomiyama A, Tamai H, Zun I, Hosokawa S, Chem. Eng. Sci., 57(11), 1849, 2002
  23. Frank T, Shi J, Burns AD, “Validation of Eulerian Multiphase Flow Models for Nuclear Safety Applications,” Third International Symposium on Two-Phase Flow Modeling and Experimentation, Assembly of World Conferences on Experimental Heat Transfer Fluid Mechanics and Thermodynamics, Sept. 22-24, 2004, Pisa, Italy(2004).
  24. Wang L, Wang LP, Guo ZL, Mi JC, Int. J. Heat Mass Transf., 82, 357, 2015
  25. Vilagines RD, Akhras AR, “Three-Phase Flows Simulation for Improving Design of Gravity Separation Vessels,” SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, September 19-22, 2010, Florence, Italy, pp. SPE-134090 (2010).
  26. Wang X, Economides M, Advanced Natural Gas Engineering, 1st ed., Gulf Publishing Co., Houston(2009).