Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.5, 620-625, 2000
Poly(methyl acrylate)를 포함한 고분자용액에서의 부분몰 과잉성질 예측
Prediction of Partial Molar Excess Properties in Polymer Solutions Containing Poly(methyl acrylate)
Poly(methyl acrylate)(PMA)를 포함한 유한농도 범위 용매(1)/PMA(2)계에 대하여 313.15-363.15 K범위에서 용매의 활동도계수 및 부분몰 과잉성질(H1E, G1E, S1E)을 inverse gas chromatography(IGC)를 이용하여 측정하였다. 용매는 산업분야에서 중요한 acetone, n-heptane, cyclohexane, chloroform, methylisobutylketone, trichloroetylene, benzene, toluene, ethylbenzene, chlorobenzene 등 10종류가 선택되었다. 유한 농도범위의 고분자용액 부분몰 과잉성질을 예측하기 위하여 UNIFAC-FV모델의 외부자유도인 C1을 실험데이터에 의하여 온도의 함수인 A, B 파라미터를 갖는 C1=A+BT로 수정하였다. 측정된 용매의 활동도를 이 수정모델에 상호 연관시킴으로써 그 모델의 파라미터들이 추산되었고, 추산된 파라미터는 다시 PMA를 포함한 유한농도의 2성분 고분자용액계에서 용매의 부분몰 과잉성질(H1E, G1E, S1E)을 예측하기 위해서 확장되었다. 예측된 결과치와 실험데이터를 비교한 결과, 허용 오차범위 내에서 만족스런 결과를 보임을 알 수 있었다.
The activity coefficients and the partial molar exess properties(H1E, G1E, S1E) were measured by inverse gas chromatography(IGC) for the concentrated solvent(1)/PMA(2) systems containing poly(methyl acrylate)(PMA) at 313.15 K to 363.15 K. Ten Kinds of solvent(acetone, n-heptane, cyclohexane, chloroform, methylisobutylketone, trichloroethylene, benzene, toluene, ethylbenzene, chlorobenzene) that are important in the industrial field were chosen in this work. The external degree of freedom of original UNIFAC-FV model was empirically modified as a C1=A+BT to predict the partial molar excess properties in finitely concentrated polymer solutions. The parameters(A,B) were estimated by correlating the activities of solvent with the modified UNIFAC-FV model and extended to predict the partial molar excess properties(H1E, G1E, S1E) of solvents in finitely concentrated polymer solutions. The predicted values agreed with the experimental partial molar excess properties within available error ranges.
[References]
  1. Smidsord O, Guillet JE, Macromolecules, 2, 272, 1969
  2. Galin M, Polymer, 24, 865, 1983
  3. Schuster RH, Grater H, Contox HJ, Macromolecules, 17, 619, 1984
  4. Galin M, Maslin L, Macromolecules, 18, 2191, 1985
  5. Kim NH, Choi BG, Choi JS, Korean J. Chem. Eng., 13(2), 129, 1996
  6. Kim NH, Won YS, Choi JS, Fluid Phase Equilib., 146(1-2), 223, 1998
  7. Conder JR, Purnell JH, Trans. Faraday Soc., 64, 1505, 1968
  8. Conder JR, Purnell JH, Trans. Faraday Soc., 64, 3100, 1968
  9. Conder JR, Purnell JH, Trans. Faraday Soc., 65, 824, 1969
  10. Conder JR, Purnell JH, Trans. Faraday Soc., 65, 839, 1969
  11. Patterson O, Macromolecules, 2, 672, 1962
  12. Brockmeier NF, Mccoy RW, Meyer JA, Macromolecules, 5, 464, 1972
  13. Choi JS, Tochigi K, Kojima K, Fluid Phase Equilib., 111(1), 143, 1995
  14. Oishi T, Prausnitz JM, Ind. Eng. Chem. Prod. Des. Dev., 17, 333, 1978
  15. Holten-Anderson J, Rasmussen P, Fredenslund A, Ind. Eng. Chem. Res., 26, 1382, 1987
  16. Chang YH, Bonner DC, J. Appl. Polym. Sci., 19, 2457, 1975
  17. Newman RD, Prausnitz JM, J. Phys. Chem., 76, 1492, 1972
  18. Hao W, Elbro HS, Alessi P, DECHEMA Chemistry Data Series, DECHEMA, Frankfurt, Vol. XIV, Part 2-3, 1992
  19. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases and Liquids," McGraw-Hill, 4th Ed., 1987, 1987
  20. Tsonopoulos C, AIChE J., 20, 263, 1974
  21. Marquardt DM, J. Coc. Indust. Appl. Math., 11, 431, 1963
  22. Gmehling J, Rasmussen P, Fredenslund A, Ind. Eng. Chem. Prod. Des. Dev., 32, 118, 1982
  23. Rackett HG, J. Chem. Eng. Data, 15, 514, 1970
  24. Elbro HS, Frendenslund A, Rasmunssen P, Ind. Eng. Chem. Res., 30, 2576, 1991