Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.6, 818-823, 2015
전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기
Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics
본 연구에서는 전산유체역학(CFD)을 이용하여 마이크로채널 내부의 Fischer-Tropsch(FT) 반응을 모사하였고, 나아가 반응채널의 너비와 높이, 냉각채널과의 거리 그리고 채널 사이 간격을 변수로 두고 채널 내부 온도에 대해 민감도 분석을 수행하였다. 마이크로채널 반응기는 채널 간의 열교환을 고려하기 위한 5개의 반응채널과 냉각채널을 대신한 냉각면으로 이루어져 있으며 채널의 높이와 너비를 포함한 변수들의 길이는 0.5 mm ~ 5.0 mm 범위에서 설정하였다. 반응물로는 H2와 CO의 혼합기체(H2/CO molar ratio=2)를 사용하였으며 반응기의 운전 조건은 GHSV=10000 h-1, 압력 20 bar와 온도 483 K(210 oC)이다. 민감도 분석의 결과로 반응채널 내부의 최대 온도는 채널의 높이에 비례하며 너비에 대해서는 특정 길이 이상에서 영향을 받지 않는 것을 확인하였으며 이 중에 냉각채널과의 거리와 채널 사이 간격은 채널 내부 온도에 거의 영향을 미치지 않았다. 따라서 채널 레이아웃에서 반응채널의 높이는 짧을수록(약 2 mm 이하), 너비는 길수록(약 4 mm 이상) 열제거뿐만 아니라 생산량 측면에서 이득을 얻을 수 있었다.
In this study, FT reaction in a microchannel was simulated using computational fluid dynamics(CFD), and sensitivity analyses conducted to see effects of channel geometry variables, namely, process channel width, height, gap between process channel and cooling channel, and gap between process channels on the channel temperature profile. Microchannel reactor considered in the study is composed of five reaction channels with height and width ranging from 0.5 mm to 5.0 mm. Cooling surfaces is assumed to be in isothermal condition to account for the heat exchange between the surface and process channels. A gas mixture of H2 and CO(H2/CO molar ratio = 2) is used as a reactant and operating conditions are the following: GHSV(gas hourly space velocity) = 10000 h-1, pressure = 20 bar, and temperature = 483 K. From the simulation study, it was confirmed that heat removal in an FT microchannel reactor is affected channel geometry variables. Of the channel geometry variables considered, channel height and width have significant effect on the channel temperature profile. However, gap between cooling surface and process channel, and gap between process channels have little effect. Maximum temperature in the reaction channel was found to be proportional to channel height, and not affected by the width over a particular channel width size. Therefore, microchannels with smaller channel height(about less than 2 mm) and bigger channel width (about more than 4 mm), can be attractive design for better heat removal and higher production.
[References]
  1. Kim HJ, Choi DK, Ahn SI, Kwon H, Lim HW, Ratio, 1, H2O, 2014
  2. Sousa-Aguiar EF, Noronha FB, Faro A, Catal. Sci. Technol., 1, 698, 2011
  3. Van Loenhout A, Van Zeelenberg L, Roth G, van Sheehan E, Jannasch N, “Commercialization of Stranded Gas with a Combined Oil and Gtl Fpso,” Offshore Technology Conference, Offshore Technology Conference(2006).
  4. Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL, Fuel Process. Technol., 71(1-3), 139, 2001
  5. Franz F, Hans T, “Process for the Production of Paraffinhydrocarbons with More Than one Carbon Atom,” Google Patents (1930).
  6. Iglesia E, Appl. Catal. A: Gen., 161(1-2), 59, 1997
  7. Almeida LC, Echave FJ, Sanz O, Centeno MA, Arzamendi G, Gandia LM, Sousa-Aguiar EF, Odriozola JA, Montes M, Chem. Eng. J., 167(2-3), 536, 2011
  8. Knochen J, Guttel R, Knobloch C, Turek T, Chem. Eng. Process., 49(9), 958, 2010
  9. Gumuslu G, Avci AK, AIChE J., 58(1), 227, 2012
  10. Keyser MJ, Everson RC, Espinoza RL, Ind. Eng. Chem. Res., 39(1), 48, 2000
  11. Davis BH, Top. Catal., 32, 143, 2005
  12. LeViness S, Tonkovich A, Jarosch K, Fitzgerald S, Yang B, McDaniel J, “Improved Fischer-tropsch Economics Enabled by Microchannel Technology,” White Paper generated by Velocys(2011).
  13. Vosloo AC, Fuel Process. Technol., 71(1-3), 149, 2001
  14. Deshmukh SR, Tonkovich ALY, Jarosch KT, Schrader L, Fitzgerald SP, Kilanowski DR, Lerou JJ, Mazanec TJ, Ind. Eng. Chem. Res., 49(21), 10883, 2010
  15. Hasan MI, Rageb A, Yaghoubi M, Homayoni H, Int. J. Therm. Sci., 48, 1607, 2009
  16. Guo ZY, Li ZX, Int. J. Therm. Sci., 46, 149, 2003
  17. Peng X, Peterson G, Int. J. Therm. Sci., 38, 755, 1995
  18. Na J, Jung I, Kshetrimayum KS, Park S, Park C, Han C, Korean Chem. Eng. Res., 52(6), 826, 2014
  19. Arzamendi G, Dieguez PM, Montes M, Odriozola JA, Sousa-Aguiar EF, Gandia LM, Chem. Eng. J., 160(3), 915, 2010
  20. Van der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255, 1999
  21. Tonkovich AL, Yuschak T, Neagle PW, Marco JL, Marco JD, Marchiando MA, Keyes LW, Deshmukh S, Luzenski RJ, “Laminated, Leak-resistant Chemical Processors; Methods of Making, and Methods of Operating,” Google Patents(2012).
  22. Zhu XW, Lu XJ, Liu XY, Hildebrandt D, Glasser D, Chem. Eng. J., 247, 75, 2014