Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.4, 425-430, 2015
폼 형태의 다공성 탄화규소 지지체 표면 위에 ZSM-5 합성
Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support
고분자 복제방법을 이용하여 제조한 폼 형태의 다공성 탄화규소 표면에 수열 합성 방법을 적용하여 ZSM-5를 합성하였다. 다공성 탄화규소 표면으로부터 ZSM-5가 합성될 수 있도록 유도하기 위하여 합성단계에 앞서 탄화규소 표면에 산화 층을 형성하였다. 수열합성 반응은 산화처리 된 다공성 탄화규소와 TEOS, Al(NO3).9H2O 및 TPAOH를 원료로 사용하여 150 oC에서 7시간 진행하였다. XRD 및 SEM 분석을 통하여 1~3 μm 크기의 ZSM-5가 다공성 탄화규소 표면에 코팅되어 성장하였음을 확인하였다. BET 분석결과 ZSM-5 합성 후에 10A이하의 미세기공이 급격히 증가하였으며, 비표면적이 0.83 m2/g에서 30.75 m2/g으로 급격히 증가되었음을 알 수 있었다.
ZSM-5 crystals grew by hydrothermal synthesis method on the surface of foam type porous silicon carbide ceramics which fabricated by polymer replica method. Oxide layer was developed on the surface of the porous silicon carbide ceramics to induce growth of ZSM-5 from the surface. In this study, hydrothermal synthesis was carried out for 7 h at 150 oC using TEOS, Al(NO3).9H2O and TPAOH as raw materials in the presence of the porous silicon carbide ceramics. X-ray Powder Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were confirmed 1~3 μm sized ZSM-5 crystals have grown on the surface of porous silicon carbide ceramics. BET data shows that small pores about 10A size drastically enhanced and surface area increased from 0.83 m2/g to 30.75 m2/g after ZSM-5 synthesis on the surface of foam type porous silicon carbide ceramics.
[References]
  1. Jens W, Solid State Ion., 132, 175, 2000
  2. Rona J, Donahoe, Liou JG, Clay Clay Min., 32, 433, 1984
  3. van Donk S, Janssen AH, Bitter JH, de Jong KP, Catal. Rev.-Sci. Eng., 45(2), 297, 2003
  4. Kim HG, Yang YC, Jeong KE, Kim TW, Jeong SY, Kim CU, Jhung SH, Lee KY, Korean Chem. Eng. Res., 51(4), 418, 2013
  5. Moulijn JA, van Diepen AE, Kapteijn F, Appl. Catal. A: Gen., 212(1-2), 3, 2001
  6. Gayubo AG, Aguayo AT, Atutxa A, Prieto R, Bilbao J, Energy Fuels, 18(6), 1640, 2004
  7. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD, Appl. Catal. A: Gen., 407(1-2), 1, 2011
  8. Sepulveda P, Am. Ceram. Soc. Bull., 76, 61, 1997
  9. Fukuura I, Asano T, “Fabrication and Properties of Some Oxide Ceramics: Alumina, Mullite and Zirconia,” 165-74 in Fine Ceramics, Edited by Saito S, Elsevier, New York(1985).
  10. Zhu XW, Jiang DL, Tan SH, Zhang ZQ, J. Am. Ceram. Soc., 84(7), 1654, 2001
  11. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ, J. Am. Ceram. Soc., 89(6), 1771, 2006
  12. Rauscher M, Selvam T, Schwieger W, Freude D, Microporous Mesoporous Mater., 75, 195, 2004
  13. Louis B, Ocampo F, Yun HS, Tessonnier JP, Pereira MM, Chem. Eng. J., 161(3), 397, 2010
  14. Eslava S, Iacopi F, Baklanov MR, Kirschhock CEA, Maex K, Martens JA, J. Am. Chem. Soc., 129(30), 9288, 2007
  15. Ledoux MJ, Pham-Huu C, Cattech, 5, 226, 2001
  16. Moene R, Makkee M, Moulijn JA, Appl. Catal. A: Gen., 167(2), 321, 1998
  17. Krawiec P, Kaskel S, J. Solid State Chem., 179, 2281, 2006
  18. Kwon WT, Kim SR, Kim Y, Lee YJ, Won J, Park WK, Oh SC, Mater. Sci. Forum, 724, 45, 2012
  19. Won JY, Kim SR, Kim Y, Shin DG, Lee YJ, Kwon WT, J. Environ. Therm. Eng., 11, 6, 2014
  20. Leroi P, Madani E, Pham-Huu C, Ledoux MJ, Savin-Poncet S, Bousquet JL, Catal. Today, 91-92, 53, 2004
  21. Wine G, Ledox MJ, Pham-Huu C, Top. Catal., 45, 111, 2007
  22. Seijger GBF, Oudshoorn OL, Van Kooten WEJ, Jansen JC, Van Bekkum H, Van Den Bleek CM, Calis HPA, Microporous Mesoporous Mater., 39, 195, 2000
  23. Jiao Y, Jiang C, Yang Z, Zhang J, Microporous Mesoporous Mater., 162, 152, 2012
  24. Losch P, Boltz M, Soukup K, Song IH, Yun HS, Louis B, Microporous Mesoporous Mater., 188, 99, 2014
  25. Inova S, Louis B, Madani B, Tessonnier JP, Ledoux MJ, Pham-Huu C, J. Phys. Chem. C, 111, 4368, 2007
  26. Katsuki H, Furuta S, Komarneni S, J. Am. Ceram. Soc., 83(5), 1093, 2000
  27. First EL, Gounaris CE, Wei J, Floudas CA, Phys. Chem. Chem. Phys., 13, 17339, 2011