Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.2, 247-252, 2015
탄화규소 결정상의 종류가 탄화규소 표면에 ZSM-5가 형성되는데 미치는 영향
Effect of SiC Crystal Phase on Growing ZSM-5 on the Surface of SiC
α-상 과 β-상 두 가지 종류의 탄화규소(SiC) 입자 표면에 수열 합성 방법으로 ZSM-5 결정을 형성하였다. SiC는 50 μm 이상이 되는 크기의 입자를 사용하였으며, ZSM-5 결정이 SiC 표면에서부터 성장하도록 유도하기 위하여 합성 단계에 앞서 SiC 표면에 산화층을 형성하였으며, 수열합성 온도와 시간을 변화시켜 보았다. 그 결과 β-SiC는 900 °C 조건에서도 산화막이 형성되었으며, 특히 150 °C 합성 조건에서 ZSM-5가 β-SiC 표면에서부터 성장하였음이 뚜렷이 관찰되었다. 200 °C 조건에서는 ZSM-5의 결정의 크기가 성장할 뿐 아니라, 시간의 증가에 따라 결정의 형태가 뚜렷해지고 SiC 표면에 도포되는 양이 증가하는 것을 확인할 수 있었다.
ZSM-5 crystals grew on the surface of α-SiC and β-SiC particles by hydrothermal synthesis method. SiC particles which were > 50 μm of size were used, and oxide layer were developed on the surface of the particles to induce growth of ZSM-5 from the surface. Then, synthesis time and temperature condition were considered growing ZSM-5. In this study, oxide layer was formed on β-SiC at 900 °C in air, and it was controlled to grow ZSM-5 grew from the β-SiC surface with 150 °C synthesis condition. This is due to Si-O-Si or Si-O-Al bond, which is basic framework of ZSM-5 can be easily formed, from the silicon oxide film on the surface of β-SiC. When the synthesis temperature was 200 °C, the size of ZSM-5 was increased, and it covered much area of the SiC surface with better crystal shapes with longer synthesis time.
[References]
  1. Baerlocher C, Meier WM, Olson DH, “Atlas of Zeolite Structure Types,” Vol 190. London, Elsevier, 1996
  2. van Donk S, Janssen AH, Bitter JH, de Jong KP, Catal. Rev.-Sci. Eng., 45(2), 297, 2003
  3. Darthomeuf D, Mater. Chem. Phys., 17, 49, 1987
  4. Meusinger J, Corma A, J. Catal., 159(2), 353, 1996
  5. Weitkamp J, Solid State Ion., 131(1-2), 175, 2000
  6. Argenauer RJ, Landolt GR, “Crystalline Zeolite ZSM-5 and Method of Preparing the Same,” US Patent 3,702,886, 1972
  7. Olson DH, Haag WO, Lago RM, J. Catal., 61, 390, 1980
  8. Yang GH, He JJ, Yoneyama Y, Tan YS, Han YZ, Tsubaki N, Appl. Catal. A: Gen., 329, 99, 2007
  9. Lee YJ, Kim YW, Viswanadham N, Jun KW, Bae JW, Appl. Catal. A: Gen., 374(1-2), 18, 2010
  10. Suzuki H, “Composite Membrane Having a Surface Layer of an Ultrathin Film of Cage-shaped Zeolite and Processes for Production Thereof,” US Patent 4,699,892, 1987
  11. Rauscher M, Selvam T, Schwieger W, Freude D, Micropor. Mesopor. Mat., 75, 195, 2004
  12. Louis B, Ocampo F, Yun HS, Tessonnier JP, Pereira MM, Chem. Eng. J., 161(3), 397, 2010
  13. Eslava S, Iacopi F, Baklanov MR, Kirschhock CEA, Maex K, Martens JA, J. Am. Chem. Soc., 129(30), 9288, 2007
  14. Seijger GBF, Oudshoorn OL, Van Kooten WEJ, Jansen JC, Van Bekkum H, Van Den Bleek CM, Calis HPA, Micropor. Mesopor. Mat., 39, 195, 2000
  15. Ledoux MJ, Pham-Huu C, Cattech, 5, 226, 2001
  16. Moene R, Makkee M, Moulijn JA, Appl. Catal. A: Gen., 167(2), 321, 1998
  17. Krawiec P, Kaskel S, J. Solid State Chem., 179, 2281, 2006
  18. Ivanova S, Vanhaecke E, Louis B, Libs S, Ledoux MJ, Rigolet S, Pham-Huu C, ChemSusChem, 1, 851, 2008
  19. Losch P, Boltz M, Soukup K, Song IH, Yun HS, Louis B, Micropor. Mesopor. Mat., 188, 99, 2014
  20. Jung EJ, Lee YJ, Kim SR, Kwon WT, Choi DJ, Kim Y, Adv. Appl. Ceram., 113, 352, 2014
  21. Basso S, Tessonnier JP, Cuong PH, Ledoux MJ, Wine Gauthier, “Zeolite/SiC Composites and Their Use in Catalysis,” US Patent 7,179,764.
  22. Merle-Mejean T, Abdelmounm E, Quintard P, J. Mol. Struc., 349, 105, 1995
  23. Kwon WT, Kim SR, Kim Y, Lee YJ, Won J, Park WK, Oh SC, Mater. Sci. Forum., 724, 45, 2012
  24. Shirazi L, Jamshidi E, Ghasemi MR, Cryst. Res. Technol., 43, 1300, 2008
  25. Nawaz Z, Xiaoping T, Fei W, Korean J. Chem. Eng., 26(6), 1528, 2009
  26. Kim HG, Yang YC, Jeong KE, Kim TW, Jeong SY, Kim CU, Jhung SH, Lee KY, Korean Chem. Eng. Res., 51(4), 418, 2013