Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.1, 16-21, 2015
압력손실을 줄이기 위한 준비작동식 유수검지장치 본체 구조 개선
Structure Improvement of Preaction Valve to Reduce the Pressure Drop
다이어프램 방식 준비작동식 유수검지장치의 압력손실을 줄이기 위하여 본체 구조를 개선하였다. 개정된 유수제어 밸브의 압력손실시험 기술기준을 통과하기 위해서는 압력손실이 20.7 kPa을 초과하여서는 안된다. 압력손실시험은 한국소방산업기술원 유수제어밸브 기술기준에 따라서 실시하였다. 준비작동식 유수검지장치는 습식 유수검지장치에 비해 압력손실이 크게 발생하였는데, 그 원인을 유체의 유동현상과 관련하여 분석하였다. 준비작동식 유수검지장치의 본체 내부 구조는 유로의 단면 크기와 방향 변화로 인해 압력손실 요인이 많았다. 이러한 압력손실 요소를 제거하기 위해 습식 유수검지장치와 비슷한 클래퍼 타입으로 구조를 변경하였다. 구조 변경 후 압력손실 값은 호칭 80A인 경우 80.9 kPa에서 14.4 kPa로 감소하였으며, 호칭 100A인 경우 171.0 kPa에서 14.2 kPa로 감소하여 기술기준에 적합한 압력손실 값을 얻을 수 있었다.
The body structure of diaphragm type preaction valve was improved in order to reduce the pressure drop. The pressure drop must be kept within 20.7 kPa to pass the revised (2012. 2. 9) standard for alarm valve and preaction valve. The pressure drop test was carried out by KFI (Korea Fire Institute) standard. The pressure drop of a preaction valve was higher than that of an alarm valve. Causes for increasing the pressure drop were investigated with the fluid flow in the valve. The preaction valve had more pressure drop factors (changes in velocity and direction) compared with the alarm valve. Inner structure of the preaction valve was changed to the clapper type to remove the pressure drop factors. In 80A and 100A size of preaction valves, the pressure drop was reduced from 80.9 and 171.0 kPa to 14.4 and 14.2 kPa respectively, after the change of the structure.
[References]
  1. National Fire Safety Code 103, National Emergency Management Agency, Notification No 2012-89.
  2. Standard for Alarm Valve and Preaction Valve, National Emergency Management Agency, Notification No 2012-69.
  3. Carbon Steel Pipes for Pressure Service (KS D 3562:2009), Korean Agency for Technology and Standards(http://www.kats.go.kr).
  4. McCabe WL, Smith JC, Harriott P, Unit Operations of Chemical Engineering, 4th ed., McGraw-Hill, Singapore, 1985
  5. Denn MM, Process Fluid Mechanics, Prentice-Hall, New Jersey, 1980
  6. Welty JR, Wilson RE, Wicks CE, Fundamentals of Momentum Heat and Mass Transfer, 3rd ed., John Wiley & Sons, New York, 1984
  7. Lee CW, Fluid Mechanics for Fire Fighting, Sidaegosi, Seoul, 2010