Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.2, 238-242, 2003
Sol-Gel 공정을 이용한 초고용량 캐패시터용 NiO 나노입자의 합성과 전극 제조
Preparation of NiO Electrodes for Supercapacitor by the Sol-Gel Process
Nickel acetate를 증류수로 가수분해 시켜, 직경 50 nm의 Ni(OH)2 나노입자를 합성하였으며, 이 나노입자를 증류수에 분산시켜 코팅 용액을 제조한 후 Ni foam 위에 dip-coating시키는 Sol-Gel 공정에 의해 초고용량 캐퍼시터용 전극을 제조하였다. 제조된 전극을 여러 온도에서 열처리시킨 결과 전극의 비축전 용량은 열처리 온도에 크게 의존하였으며, 250 ℃에서 열처리시 160 F/g의 가장 큰 용량을 보였다. 이 현상은 200 ℃이하의 온도로 열처리 시에는 전극 위의 분말들이 acetate기와 같은 불순물들에 의해 기공이 막혀 낮은 비표면적을 보였으나 250 ℃에서 불순물이 제거되면서 기공이 회복되어 가장 큰 비표면적(177 m(2)/g)을 보이기 때문으로 해석된다.
The Ni(OH)2 nanoparticles with average diameter of 50 nm were synthesized by hydrolyzing nickel acetate with water, and were dispersed in the distilled water to prepare the coating solution. The electrodes for supercapacitor were prepared by dip-coating the coating solution on the Ni-foam. The electrodes heat-treated at several temperatures showed the highest specific capacitance, 160 F/g, at 250 ℃. It can be explained that the Ni(OH)2 particles heat-treated at 100 and 200 ℃ on the electrodes contained the impurities such as acetate groups in the pores, and resulted in low specific surface areas. However, as the calcination temperature increases, the impurities incorporated in the pores are removed at 250 ℃, and thus, the particles on the electrodes show the highest specific surface area (177 m(2)/g).
[References]
  1. Conway BE, J. Electrochem. Soc., 138, 1539, 1991
  2. Raistrick ID, Electrochemistry in Electronics, Noyes Publications, Park Ridge, NJ, 1995
  3. Lin C, Ritter JA, Popov BN, J. Electrochem. Soc., 145(12), 4097, 1998
  4. Kim HJ, Study on Electrochemical Behavior and Improvement of Pseudocapacitance According to Structure Change of Electrode for Ruthenium Oxide Type Pseudocapaciotr, Ph.D. Dissertation, Dankook Univ., Seoul, Korea, 2000
  5. Conway BE, Proc. of the Sym. on electrochemical Capaciotrs, Chicago, U.S.A., 15-49, 1995
  6. Conway BE, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York, NY, 1999
  7. Kim DH, Seo WS, Song KC, Shin KH, Kim JH, HWAHAK KONGHAK, 40(5), 607, 2002
  8. Liu KC, Anderson MA, J. Electrochem. Soc., 143(1), 124, 1996
  9. Liu KC, Anderson MA, Electrochem. Soc. Proceed., 29, 78, 1995
  10. Liu KC, Anderson MA, Electrochem. Soc. Proceed., 25, 97, 1996
  11. Dennis AC, Richard MB, J. Electrochem. Soc., 136, 723, 1989
  12. Pandya KI, O'Grady WE, Corrigan DA, McBreen J, Hoffman RW, J. Phys. Chem., 94, 21, 1990
  13. Chang ZR, Li GG, Zhao YJ, Chen JG, Ding YC, J. Power Sources, 74(2), 252, 1998
  14. Sharma PK, Fantini MCA, Gorenstein A, Solid State Ion., 113-115, 457, 1998
  15. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57(4), 603, 1985
  16. Song KC, Pratsinis SE, J. Am. Ceram. Soc., 84(1), 92, 2001