Issue
Korean Chemical Engineering Research,
Vol.47, No.2, 243-247, 2009
에틸렌글리콜의 수증기 개질반응을 이용한 수소제조에 대한 열역학적 평형 및 효율 분석
Thermodynamic Equilibrium and Efficiency of Ethylene Glycol Steam Reforming for Hydrogen Production
본 연구는 수소제조를 위한 에틸렌글리콜 수증기 개질반응에 대한 열역학적 특성 분석을 목적으로 한다. 이를 위하여 온도(300~1,600 K), 반응물 조성비(Steam/Carbon ratio=0.5~4.5), 압력(1~30 기압) 등의 다양한 반응조건을 변화시 키면서 열역학적 평형조성 및 효율 등을 조사하였다. 주어진 조건하에서 흡열반응인 개질반응과 발열반응인 수성가스 전환반응 및 메탄화반응간 경쟁특성을 확인하였으며, 반응온도 400 K를 지나면서 수소발생이 관찰되어 500 K를 지나면서 급격한 발생량의 증가를 확인하였다. 반응물 가운데 수증기의 비율을 양론비(S/C=1.0) 이상으로 증가시킬 경우 수성가스 전환반응이 촉진되어 일산화탄소 저감 및 수소발생 증가 거동을 나타내었다. 결과적으로 열역학적 효율감소를 최소화 하면서 수소발생량을 극대화할 수 있는 조건은 반응온도 900 K 이상 및 수증기 대 탄소간 비율이 3.0 이내의 범위에 해당하는 것으로 판단된다.
This study is purposed to analyze thermodynamic properties on the hydrogen production by ethylene glycol steam reforming. Various reaction conditions of temperatures(300~1,600 K), feed compositions(steam/carbon= 0.5~4.5), and pressures(1~30 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 500 K. An increase of steam to carbon ratio(S/C) in feed mixture over 1.0 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.
[References]
  1. Hu X, Lu G, “Investigation of the Steam Reforming of a Series of Model Compounds Derived from Bio-oil for Hydrogen Production,” Applied Catalysis B: Environmental, In Press, 2008
  2. Rossi CCRS, Alonso CG, Antunes OAC, Guirardello R, Cardozo-Fiho L, International Journal of Hydrogen Energy, 34, 323, 2009
  3. Adhikari S, Fernando SD, Haryanto A, Renewable Energy, 33, 1097, 2008
  4. Wen G, Xu Y, Ma H, Xu Z, Tian Z, International Journal of Hydrogen Energy, 33, 6657, 2008
  5. Domine ME, Iojoiu EE, Davidian T, Guilhaume N, Mirodatos C, Catalysis Today, 133, 565, 2008
  6. Vagia EC, Lemonidou AA, Applied Catalysis A: General, 351, 111, 2008
  7. Feng D, Wang Y, Wang D, Wang J, Chemical Engineering Journal, 146, 477, 2009
  8. Aktas S, Karakaya M, Avc AK, International Journal of Hydrogen Energy, In Press, 2009
  9. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 43(1), 13, 2003
  10. Bimbela F, Olivia M, Ruiz J, Garcia L, Arauzo J, Journal of Analytical and Applied Pyrolysis, In Press, 2009
  11. Nezhad MZ, Rowshanzamir S, Eikani MH, International Journal of Hydrogen Energy, 34, 1292, 2009
  12. Nilsson M, Jansson K, Jazsa P, Pettersson LJ, Applied Catalyst B: Environmental, 86, 18, 2009
  13. Escritori JC, Dantas SC, Soares RR, Hori CE, Catalyst Communications, In Press, 2009
  14. Vagia EC, Lemonidou A, International Journal of Hydrogen Energy, 33, 2489, 2008