Issue
Korean Chemical Engineering Research,
Vol.43, No.1, 181-185, 2005
Tag식 개방계 장치를 이용한 가연성 이성분계 혼합물의 인화점 측정 및 예측
Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures using Tag Open-Cup Apparatus
인화점은 가연성 물질의 화재 및 폭발의 잠재위험성을 결정하는데 가장 중요한 연소 특성치 가운데 하나이다. 인화점의 정확한 지식은 산업 화재의 방호 평가 및 적절한 예방에 중요하다. 본 연구에서 n-butanol+n-propionic acid계와, n-propanol+n-propionic acid계의 개방계 인화점을 Tag식 개방계 장치(ASTM D 1310-86)를 이용하여 측정하였다. 실험값은 라울의 법칙과 van Laar식에 의해 계산된 값과 비교하였다. 그 결과, van Laar식에 의한 에측값이 라울의 법칙에 의한 예측값 보다 실험값에 더욱 근사함을 확인하였다.
The flash point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of industrial material. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The flash points for the n-butanol+n-propionic acid and n-propanol+n-propionic acid systems were measured by using Tag open-cup apparatus(ASTM D 1310-86). The experimental data were compared with the values calculated by the laws of Raoult and van Laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult’s law.
[References]
  1. Meyer E, "Chemistry of Hazardous Materials", 2nd ed., Prentice-Hall Inc., New Jersey, NJ, 1990
  2. Lee SK, Ha DM, "Newest Chemical Engineering Safety Engineering", Donghwagisul Publisher, Seoul, 1997
  3. Lance RC, Barnard AJ, Hooyman JE, J. Hazard. Mater., 3, 107, 1979
  4. Yagyu S, J. Jpn. Soc. for Safety Eng., 24(3), 152, 1985
  5. Affens WA, Mclaren GW, J. Chem. Eng. Data, 17(4), 482, 1972
  6. Wu DT, Finkelmen R, "A Mathematical Model for the Prediction Closed Cup Flash Points", American Chemical Society. Division of Organic Coatings and Plastics Chemistry, 61-67, 1978
  7. Gmehling J, Rassmussen P, Ind. Eng. Chem. Fundam., 21(2), 186, 1982
  8. Walsham JG, "Prediction of Flash Points for Solvent Mixtures", Advan. Chem. Ser. Publ. 73 Ser. 124, American Chemical Society, Washington, DC, 56-59, 1973
  9. Ha DM, Kim MG, J. Korean Ins. Ind. Safety, 12(1), 76, 1997
  10. Hanley B, Process Saf. Prog., 17(2), 86, 1998
  11. Mitchell JW, Vratsanos MS, Hanley BF, Parekh VS, J. Chem. Eng. Data, 44(2), 209, 1999
  12. Jones JC, Godefroy J, J. Loss Prev. Process Ind., 15(3), 245, 2002
  13. Godefroy J, Jones JC, J. Loss Prev. Process Ind., 15(3), 241, 2002
  14. Ha DM, Mok YS, Choi JW, HWAHAK KONGHAK, 37(2), 146, 1999
  15. Ha DM, Lee S, Choi YC, Oh H, HWAHAK KONGHAK, 41(2), 186, 2003
  16. Smith JM, VanNess HC, "Introduction to Chemical Engineering Thermodynamics", 4th ed., McGraw-Hill, New York, NY, 1987
  17. Reid CR, Prausnitz JM, Poling BE, "The Properties of Gases and Liquids", 4th ed., McGraw-Hill, New York, NY, 1988
  18. Gmehling J, Onken U, Arlt W, "Vapor-Liquid Equilibrium Data Collection, Vol. 1, Part 1 Part 7", Deutsche Gesellschaft fur Chemisches Apparatewessen(DECHEMA), 1980
  19. Dean JA, Lange's Handbook of Chemistry, 15th ed., McGraw-Hill, 1999
  20. Stephenson RM, "Flash Points of Organic and Organometallic Compounds", Elsevier, NY, 1987
  21. Kim MG, Ha DM, Park JC, Korean J. Chem. Eng., 12(1), 39, 1995
  22. Kleinbaum DG, Kupper LL, Muller KE, "Applied Regression Analysis and Other Multivariable Methods", 2nd ed., PWS-KENT Publishing Company, Boston, 1988