Issue
Korean Chemical Engineering Research,
Vol.43, No.1, 129-135, 2005
저온 플라즈마 공정에 의한 효율적인 탈황 및 탈질
Efficient Desulfurization and Denitrification by Low Temperature Plasma Process
본 연구에서는 펄스 코로나 방전 공정에 의해 SO2와 SO2/NO의 제거효율을 분석하였으며, 여러 공정변수가 제거효율에 끼치는 영향을 체계적으로 조사하였다. 공정변수로서 인가전압, 펄스 주파수, 체류시간, 반응물의 초기 농도(NO, SO2, NH3, H2O and O2)의 영향을 분석하였다. 인가되는 전압, 펄스 주파수 또는 체류시간이 증가함에 따라 또는 O2와 H2O가 첨가됨에 따라 SO2의 제거효율과 SO2/NO의 동시 제거효율은 증가하였다. 또한, NH3의 초기 농도가 증가할수록 SO2/NO의 제거효율은 증가하였다. 이 실험적인 결과들은 NOx와 SOx를 제거하기 위한 펄스 코로나 방전 공정장치 설계의 기초 자료로 사용될 수 있다.
In this study, we have analyzed the removal efficiencies of SO2 and SO2/NO by the pulsed corona discharge process and investigated the effects of several process variables on those removal efficiencies systematically. The effects of process variables such as applied voltage, pulse frequency, residence time, and initial concentrations of reactants (NO, SO2, NH3, H2O, and O2) on the removal efficiency were analyzed. As the applied voltage, the pulse frequency or the residence time increases or as the O2 or the H2O or the NH3 concentration in the inlet feed gas stream increases, the SO2 removal efficiencies and the simultaneous removal efficiencies of SO2/NO also increase. These experimental results can be used as a basis to design the pulsed corona discharge process to remove NOx and SOx.
[References]
  1. Clements JS, Mizuno A, Wright CF, Davis RH, IEEE Trans. Ind. Appl., 25(1), 63, 1989
  2. Chang JS, Lawless PA, Yamanoto T, IEEE Trans. Ind. Appl., 19(6), 1152, 1991
  3. Tas MA, Vanhardeveld R, Vanveldhuizen EM, Plasma Chem. Plasma Process., 17(4), 371, 1997
  4. Masuda S, Hosokawa S, IEEE Trans. Ind. Appl., 29(4), 781, 1993
  5. Nunez CM, Ramsey GH, Ponder WH, AbbottJames H, Hamel L, Air & Waste, 43(2), 242, 1993
  6. Tas MA, Vanhardeveld R, Vanveldhuizen EM, Plasma Chem. Plasma Process., 17(4), 371, 1997
  7. van Veldhuizen EM, Zhou LM, Rutgers WR, Plasma Chem. Plasma Process., 18(1), 91, 1998
  8. Yan W, Wang N, Zhu Y, Zhang Y, J. Electrostatics, 44(1), 11, 1998
  9. Oda T, Yamashita R, Takahashi T, Masuda S, IEEE Trans. Ind. Appl., 32(2), 227, 1996
  10. Urashima K, Chang JS, Ito T, IEEE Trans. Ind. Appl., 33(4), 879, 1997
  11. Mok YS, Nam IS, Chem. Eng. J., 85(1), 87, 2002
  12. Bromberg L, Cohn DR, Rabinovich A, Int. J. Veh. Des., 25(4), 275, 2001
  13. Nishikawa K, Nojima H, Jpn. J. Appl. Phys., 40(8), 835, 2001
  14. Amirov RH, Chae JO, Dessiaterik YN, Filimonova EA, Zhelezniak MB, Jpn. J. Appl. Phys., 37(6), 3521, 1998
  15. Park JY, Kim IK, Koh HS, Kim JD, Lee DC, Chang JS, Trans. KIEE., 47(11), 1979, 1998
  16. Kim YH, Hong SH, Ungyong Mulli, 11(4), 393, 1998
  17. Dinelli GL, Civitano M, IEEE Trans. Ind. Appl., 26(4), 535, 1990
  18. Kim DJ, Choi YR, Kim KS, Plasma Chem. Plasma Process., 21(4), 625, 2001
  19. Kim DJ, Kim KS, IEEE Trans. Plasma Sci., 31(2), 227, 2003
  20. Park JH, Kim DJ, Kim KS, HWAHAK KONGHAK, 40(3), 351, 2002
  21. Chang JS, Pontiga F, Atten P, Castellanos A, IEEE Trans. Ind. Appl., 32(6), 1250, 1996
  22. Chang MB, Balbach JH, Rood MJ, Kushner MJ, J. Appl. Phys., 69(8), 4409, 1991