Issue
Korean Chemical Engineering Research,
Vol.43, No.1, 92-97, 2005
PDMS의 접촉각 및 외부전압 변화에 따른 마이크로채널에서 유체의 속도변화
Effect of Contact Angles of PDMS and External Voltageon Flow Velocity in Microchannel
본 연구에서는 음성 감광제를 이용하여 모형을 제작하고, PDMS(polydimethylsiloxane)로 본을 뜬 후에 유리와 접합시켜 마이크로채널을 제작하였다. 특히 PDMS의 접촉각 변화에 따른 마이크로채널에서 유체의 속도변화를 측정하기 위하여, PDMS의 표면을 플라즈마를 이용하여 처리되었다. 표면처리된 PDMS의 접촉각은 19°, 46° 그리고 69° 였으며, 미처리된 PDMS의 접촉각은 105°였다. 표면처리된 PDMS와 플라즈마 처리를 하지 않은 PDMS에 대하여 외부전압을 변화시켜서 마이크로채널에서의 유체의 속도를 측정하였다. 그 결과 동일한 접촉각을 갖는 PDMS에 대하여 외부전압을 변경시켰을 때, 외부전압이 증가할수록 유체의 속도가 비선형적으로 증가하였다. 이는 외부전압이 증가할수록 계면에서의 전하밀도가 증가하게 되고, 이로 인하여 전기이중층이 압축되어 표면전위가 증가하며, 따라서 제타전위의 값이 증가하기 때문인 것으로 해석된다. 또한, 동일한 외부전압에서 PDMS의 접촉각이 가장 작은 19°일 때 유체의 속도가 가장 빠르게 나타났다. 이는 유체와 PDMS의 부착 정도에 따라 전기이중층 두께가 달라지고, 이러한 두께변화가 결과적으로 동일한 외부전압에서 접촉각의 크기에 따라 유체의 속도차이를 가져오는 것으로 사료된다.
In this study, the effect of contact angles of PDMS and external voltage has been investigated. SU-8 (Microchem, USA) negative photoresist and PDMS are used to make the microchannel. The contact angle of the native PDMS is 105o. The native PDMS is treated with the oxygen plasma and the contact angle changes 19°, 46° and 69°. As a result, the rate of increase in flow velocity is not directly proportional to the rate of increase of external voltage. This is because the electrical double layer is condensed and the zeta potential is increased with an increase of the external voltage. The flow velocity is highest for the contact angle of 19° at the same external voltage. Hence we conclude that the thickness of electrical double layer and flow velocities vary with contact angle at the same external voltage.
[References]
  1. Madou MJ, Fundamentals in Microfabrication, CRC press, Boca Raton, 1997
  2. Manz A, Becker H, Microsystem Technology in Chemistry and Life Science, Springer, 1998
  3. Kopp MU, de Mello AJ, Manz A, Science, 280(5366), 1046, 1998
  4. Berdichevsky Y, Khandurina J, Guttman A, Lo YH, Sens. Actuators B-Chem., 97(4), 402, 2004
  5. Hillborg H, Ankner JF, Gedde UW, Smith GD, Yasuda HK, Wikstrom K, Polymer, 41(18), 6851, 2000
  6. Murakami T, Kuroda S, Osawa Z, J. Colloid Interface Sci., 202(1), 37, 1998
  7. Liu Y, Fanguy JC, Bledsoe JM, Henry CS, Anal. Chem., 72(24), 5939, 2000
  8. Ren X, Bachman M, Sims C, Li GP, Allbritton N, J. Chromatogr. B, 762(2), 117, 2001
  9. Kozicki NM, Maroufkhani P, Mitkova M, "Flow Regulation in Microchannels via Electrical Alteration of Surface Properties", Superlattices and Microstructures(in press)
  10. McCormick RM, Anal. Chem., 60(21), 2322, 1988
  11. Hayes MA, Ewing AG, Anal. Chem., 64(5), 512, 1992
  12. Belder D, Elke K, Husmann H, J. Chromatogr. A, 868(1), 63, 2000
  13. Polson NA, Hayes MA, Anal. Chem., 72(5), 1088, 2000
  14. Sinton D, Escobedo-Canseco C, Ren LQ, Li DQ, J. Colloid Interface Sci., 254(1), 184, 2002
  15. Lee CS, Mcmanigill D, Wu CT, Patel B, Anal. Chem., 63(15), 1519, 1991
  16. Lee CS, Blanchard WC, Wu CT, Anal. Chem., 62(14), 1550, 1990
  17. Inatomi KI, Izuo SI, Lee SS, Ohji H, Shiono S, Microelectron. Eng., 70(1), 13, 2003
  18. Chen JF, Jin QH, Zhao JL, Xu YS, Biosens. Bioelectron., 17(7), 619, 2002
  19. Deng Y, Zhang H, Henion J, Anal. Chem., 73(7), 1432, 2001
  20. Kutter JP, Jacobson SC, Ramsey JM, Anal. Chem., 69(24), 5165, 1997
  21. Oddy MH, Santiago JG, J. Colloid Interface Sci., 269(1), 192, 2004
  22. Probstein RF., Physicochemical Hydrodynamics, John Wiley and Sons, Inc., 1994
  23. Kim JD, Interface Phenomenology, Aruka, 2000
  24. Ryu DI, Kim JH, Shin YS, Interface Science, Chonnam National Univ., 1998
  25. Olah A, Hillborg H, Vancso J, Appl. Surf. Sci., in press
  26. Kasemura T, Takahashi S, Nakane N, Maegawa T, Polymer, 37(16), 3659, 1996