Issue
Korean Chemical Engineering Research,
Vol.43, No.1, 85-91, 2005
PET 기판상에 ECR 화학증착법에 의해 제조된 SnO2 투명도전막의 특성
Characteristics of Transparent Conductive Tin Oxide Thin Films on PET Substrate Prepared by ECR-MOCVD
ECR-MOCVD를 이용한 상온조건에서 투명전도성 고분자막이 (CH3)4Sn-H2-O2 분위기하에 SnO2막이 제조되었다. 제조된 투명전도막의 전기적특성은 공정압력, 전자석/분사링/기판사이의 거리, 전자석의 전류, 마이크로파 출력, 증착시간과 같은 공정변수에 따라 조사되었다. 마이크로파 출력과 전자석의 정류가 증가함에 따라 낮은 전기적 저항을 갖는 SnO2 막이 형성되었다. 또한 이들 공정변수들이 증착된 막의 광학적특성에 미치는 영향은 중요하게 나타났다. ECR-MOCVD에 의해 제조된 막의 투과도와 반사도는 380-780 nm의 가시광영역에서 각각 93-98%, 0.1-0.5%였다. 증착된 막의 평균 grain 크기는 공정변수에 관계없이 20-50 nm범위의 값으로 일정하였다. 본 연구의 최적화된 조건에서 전기적저항은 7.5×10-3 ohm·cm, 투과도 93%, 반사도 0.2%를 갖는 막이 얻어졌다.
SnO2 films were prepared at room temperature under a (CH3)4Sn-H2-O2 atmosphere in order to obtain transparent conductive polymer by using ECR-MOCVD (Electron Cyclotron resonance -Metal Organic Chemical Vapor Deposition) system. The electrical properties of the films were investigated as function of process parameters such as deposition time, microwave power, magnetic current power, magnet/showering/substrate distance and working pressure. An increase in microwave power and magnetic current power brought on SnO2 film formation with low electric resistivity. On the other hand, the effects of process parameters described above on optical properties were insignificant in the range of our experimental scope. The transmittance and reflectance of the films prepared by the ECR-MOCVD exhibited their average values of 93-98% at wave length range of 380-780 nm and 0.1-0.5%, respectively. The grain size of the SnO2 films that are also insensitive with the process parameters were in the range of 20-50 nm. On the basis of experimental data obtained in the present study, electrical resistivity of 7.5×10 -3 ohm·cm, transmittance of 93%, and reflectance of 0.2% can be taken as optimum values.
[References]
  1. Vessen JL, "Physics of Thin Films", (Georg Hass, ed.) Academic Press. New York, 9, 1-71, 1981
  2. Deschamps FL, "Recent Development Results in Color Plasma Display", SID, 315-318, 1994
  3. RadhaKrishna B, Subramanyam TK, SrinivasuluNaidu B, Uthanna S, Opt. Mater., 15(3), 217, 2000
  4. Girtan M, Rusu GI, Rusu GG, Mater. Sci. Eng., B76(2), 156, 2000
  5. Robbins JJ, Alexander RT, Xiao W, Vincent TL, Wolden CA, Thin Solid Films, 406(1-2), 145, 2002
  6. Dolbec R, ElKhakani MA, Serventi AM, Saintjacques RG, Sens. Actuators B-Chem., 93(1-3), 566, 2003
  7. Shanthi E, Dutta V, Banerjee A, Chopra KL, J. Appl. Phys., 51(12), 6243, 1980
  8. Shanthi E, Dutta V, Banerjee A, Chopra KL, J. Appl. Phys., 53(2), 1612, 1982
  9. Wu WF, Chiou BS, Hsieh ST, Semicond. Sci. Technol., 9(6), 1242, 1994
  10. Jeong WJ, Kim SK, Kim JU, Park GC, Gu HB, Tran. Elec. Electronic Materials, 3(1), 18, 2002
  11. Ataev BM, Mamedov VV, Omaev AK, Magomedov BA, Mater. Sci. Semic. Proc., 6(5-6), 535, 2003
  12. Water W, Chu SY, Mater. Lett., 55(1-2), 67, 2002
  13. Yusta FJ, Hitchman ML, Shamlian H, J. Mater. Chem., 7(8), 1421, 1997
  14. Chow TP, Chezzo M, Baliga BJ, J. Electrochem. Soc., 129(5), 1041, 1982
  15. Hyun J, Jeon BJ, Byun D, Lee JK, Mat. Res. Soc. Symp. Proc., 795, 2004
  16. Jeon BJ, Lee JK, Mat. Res. Soc. Symp. Proc., 812, 2004