Issue
Korean Chemical Engineering Research,
Vol.43, No.1, 47-52, 2005
퇴적금속 분진층을 전파하는 화염의 연소특성과 위험성 평가
Characteristics and Risk Assessment of Flame Spreading Over Metal Dust Layers
미립 금속분체에 대한 산업 수요 증가와 함께, 퇴적 금속분의 착화에 의한 화재, 폭발사고가 증가하고 있다. 본 연구에서는 퇴적 금속분체의 화재, 폭발 위험특성을 조사하기 위하여 새로운 실험장치를 개발하였다. 금속분(Mg, Zr, Ta, Ti) 및 PMMA(polymethyl methacrylate)분진을 사용하여, 연소 거동(소염거리, 화염전파속도) 및 화염전파에 미치는 N2 치환 분위기 농도의 영향 등을 실험적으로 상세히 조사하였다. 실험결과로부터, 퇴적 금속 분체의 화염전파속도는 PMMA보다 크고, 화염전파속도의 퇴적층 두께에 대한 의존성은 작으며, 질소 치환 분위기에서의 Mg의 한계 산소 농도는 3.6-3.7 vol%로 나타났다. 퇴적금속 분체층의 화염전파속도와 소염거리 역수는 높은 상관관계를 가지고 있으며, 이들 연소성 지표에 있어서 상대적인 위험성의 예측이 가능하다.
The wide use of metal dusts have been found in industrial field and many dust explosion accidents occur by fire spread of dust layer. In this study, we developed a new experimental device to examine fire and explosion characteristics of the dust layer. Aspects of the burning zone over metals(Mg, Zr, Ta, Ti, etc) and PMMA(Polymethyl methacrylate) dust layers have been investigated experimentally to clarify behaviors (Spread rate and quenching distance) and effects of N2 surrounding gas on the fire spread over metal dust layers. From the experimental result, it was found that the spread rate of metal dusts is larger than PMMA, the dependability of spread rate over the thickness of dust layer is small, and the minimum oxygen concentration of spread flame over Mg dust layer is 3.6-3.7 vol%. Since high correlation between the spread rate and the reciprocal of quenching distance was seen, relative risk prediction in those inflammable parameters can be predicted.
[References]
  1. Ohlemiller TJ, Combust. Flame, 81, 341, 1990
  2. Bakhman NN, Combust. Explos., 29, 14, 1993
  3. Bakhman NN, Combust. Explos., 29, 18, 1993
  4. El-Sayed SA, Abel-latif AM, J. Loss Prev. Process Ind., 13, 509, 2000
  5. Eckhoff RK, "Dust Explosion in the Process Industries; 2nd ed.", BH, 1997
  6. Siwek R, Pellmont G, Safety Technical Indices: Methods of Determination and Factors Influencing Hazard Evaluation in Dust Handling Equipment. Proc. of Euromech Colloquium 208, Explosion in Industry, Germany, 1986
  7. Chernenko EV, Combust. Explos., 30(5), 617, 1994
  8. Glassman I, "Combustion - 3rd Edition", Academic Press, San Diego, 1996
  9. Reynolds WC, STANJAN - Chemical Equilibrium Code, Stanford University, 1987