Issue
Korean Chemical Engineering Research,
Vol.61, No.1, 142-154, 2023
한국 영덕 풍력단지 사례 연구를 통한 풍력 발전의 환경 영향 평가
Life Cycle Assessment (LCA) of the Wind Turbine : A case study of Korea Yeongdeok Wind Farm
전세계적으로 환경의 중요성이 부각되면서, 원재료 준비, 생산 공정, 운송 및 설치 등 산업 전체 기간에 걸친 기후 변화 주요 물질인 탄소 배출량을 계산하고, 저감해야 한다는 필요성이 강조되고 있다. 이를 전과정평가(Life Cycle Assessment, LCA)라 정의되면서 전세계적으로 다양한 산업들에 시도되고 있다. 국내에도 일부 관련 시도들이 있었지 만, 국내 재생에너지 산업에 대해서는 거의 발표되지 않았다. 이러한 연구 중요성에도 불구하고, 부진한 관련 연구의 격차를 메꾸기 위해 본 연구는 국내 육상 풍력발전 단지의 한 사례인 경북 영덕 발전에 대하여 LCA 연구를 관련 시 스템 중 가장 많이 사용되는 SimaPro를 이용하여 수행하였다. 연구 결과 풍력 터빈 1대의 에너지 회수기간(EPT)는 약 10개월이며, 1 kwh의 전력을 생산하는데 배출되는 온실가스 배출량(Green House Gas, GHG,)는 15 g CO2/kWh로 다 른 에너지원과 비교해서 경쟁력 있음을 보였다. 부품 별 환경 영향 평가에서는 풍력 터빈의 타워가 여러 환경 영향 부 문에 영향이 가장 크다는 결과를 보였다. 본 연구에서 얻어진 경험은 향후 신재생 에너지 보급 및 확대 정책의 강화와 대중의 인식 제고에 도움이 될 것이라고 사료된다.
As the importance of the environment has been recognized worldwide, the need to calculate and reduce carbon emissions has been drawing an increasing attention throughout various industrial sections. Thereby the discipline of LCA (Life Cycle Assessment) involving raw material preparation, production processes, transportation and installation has been established. There is a clear research gap between the need and the practice for Korean Case of renewable energy industry, particularly wind power. To bridge the gap, this study conducted LCA research on wind power generation in the Korean area of Yeongdeok, an example of a domestic onshor wind power complex using SimaPro, which is the most widely used LCA system. As a result of the study, the energy recovery period (EPT) of one wind turbine is about 10 months, and the GHG emitted to generate power of 1 kwh is 15 g CO2/kWh, which is competitive compared to other energy sources. In the environmental impact assessment by component, the results showed that the tower of wind turbines had the greatest impact on various environmental impact sectors. The experience gained in this study can be further used in strengthening the introduction of renewable energy and reducing the carbon emission in line with reducing climate change.
[References]
  1. https://www.ipcc.ch/.
  2. Agreement P, “Paris Agreement,” Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change, 4, 2017(2015).
  3. http://energyatlas.iea.org/#!/tellmap/1378539487.
  4. Council GWE, “GWEC Global Wind Report 2021,” Glob. Wind Energy Counc(2021).
  5. Pacala S, Socolow R, Science, 305, 968, 2004
  6. Nazir MS, Mahdi AJ, Bilal M, Sohail HM, Ali N, Iqbal HMN, Sci. Total Environ., 683, 436, 2019
  7. Saidur R, Rahim NA, Islam MR, Solangi KH, Renew. Sust. Energ. Rev., 15, 2423, 2011
  8. Dhar A, Naeth MA, Jennings PD, El-Din MG, Sci. Total Environ., 718, 134602, 2020
  9. Sebestyén V, Renew. Sust. Energ. Rev., 151, 111626, 2021
  10. Kumar Y, Ringenberg J, Depuru SS, Devabhaktuni VK, Lee JW, Nikolaidis E, Andersen B, Afjeh A, Renew. Sust. Energ. Rev., 53, 209, 2016
  11. Guangul FM, Chala GT, “SWOT Analysis of Wind Energy as a Promising Conventional Fuels Substitute,” 1-6, (2019).
  12. Silva DAL, Nunes AO, Moris VAS, Piekarski CM, Rodrigues TO, VII Conferencia Internacional de anáLisis de Ciclo de Vida En Latinoamérica(2017).
  13. Chang RD, Zuo J, Zhao ZY, Zillante G, Gan XL, Soebarto V, Renew. Sust. Energ. Rev., 72, 48, 2017
  14. Waas T, Hugé J, Block T, Wright T, Benitez-Capistros F, Verbruggen A, Sustainability, 6, 5512, 2014
  15. ISO, ISO 14044. “Environmental Management – Life Cycle Assessment – Requirements and Guidelines,” British Standards Institution( 2006).
  16. ISO, ISO 14040. “Environmental Management – Life Cycle Assessment – Principles and Framework,” British Standards Institution( 2006).
  17. Bhat IK, Prakash R, Renew. Sust. Energ. Rev., 13, 1067, 2009
  18. Hwang H, Mun J, Kim J, Korean Chem. Eng. Res., 58(3), 381, 2020
  19. Kim K, Kim J, Korean Chem. Eng. Res., 54(4), 470, 2016
  20. Strantzali E, Aravossis K, Renew. Sust. Energ. Rev., 55, 885, 2016
  21. Martinez E, Sanz F, Pellegrini S, Jimenez E, Blaco J, Int. J. Life Cycle Assess, 14, 52, 2009
  22. Varun, Bhat IK, Prakash R, Renew. Sust. Energ. Rev., 13, 1067, 2009
  23. Oebels KB, Pacca S, Renew. Energy, 53, 60, 2013
  24. Awan AB, Khan ZA, Renew. Sust. Energ. Rev., 33, 236, 2014
  25. Raadal HL, Vold BI, Myhr A, Jonkman JM, Robertson AN, Nygaard TA, Renew. Energy, 66, 314, 2014
  26. Bonou A, Laurent A, Olsen SI, Appl. Energy, 180, 327, 2016
  27. Martínez E, Latorre-Biel JI, Jiménez E, Sanz F, Blanco J, Renew. Sust. Energ. Rev., 93, 260, 2018
  28. Gkantou M, Rebelo C, Baniotopoulos C, Energies, 13, 3950, 2020
  29. Pollini B, Rognoli V, Sustain. Prod. Consum., 28, 1130, 2021
  30. Tremeac B, Meunier F, Renew. Sust. Energ. Rev., 13, 2104, 2009
  31. MartÍnez E, Sanz F, Pellegrini S, Jiménez E, Blanco J, Renew. Energy, 34, 667, 2009
  32. Vargas AV, Zenón E, Oswald U, Islas JM, Güereca LP, Manzini FL, Appl. Therm. Eng., 75, 1210, 2015
  33. Uddin MS, Kumar S, J. Clean Prod., 69, 153, 2014
  34. Huang YF, Gan XJ, Chiueh PT, Renew. Energy, 102, 98, 2017
  35. Alsaleh A, Sattler M, Clean Technol. Environ. Policy, 21, 887, 2019
  36. Stavridou N, Koltsakis E, Baniotopoulos CC, Clean Energy, 4, 48, 2019
  37. Nagle AJ, Delaney EL, Bank LC, Leahy PG, J. Clean Prod., 277, 123321, 2020
  38. Upadhyayula VKK, Gadhamshetty V, Athanassiadis Tysklind DM, Meng F, Pan Q, Cullen JM, Yacout DMM, Environ. Sci. Technol., 56, 1267, 2022
  39. Chipindula J, Botlaguduru VSV, Du H, Kommalapati RR, Huque Z, Sustainability, 10, 2022, 2018
  40. https://www.epa.gov/.
  41. Choi BH, Park SU, Lee DK, New Renew. Energy, 3, 11, 2007
  42. Reinert C, Deutz S, Minten H, Dörpinghaus L, von Pfingsten S, Baumgärtner N, Bardow A, Comput. Chem. Eng., 153, 107406, 2021
  43. De Camillis C, Brandão M, Zamagni A, Pennington DW, Towards Recommendations for Policy Making and Business Strategies (2013).
  44. Ekvall T, Azapagic A, Finnveden G, Rydberg T, Weidema BP, Zamagni A, Int. J. Life Cycle Assess., 21, 293, 2016
  45. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, Zelm RV, Int. J. Life Cycle Assess., 22, 138, 2017
  46. Amponsah NY, Troldborg M, Kington B, Aalders I, Hough RL, Renew. Sust. Energ. Rev., 39, 461, 2014