Issue
Korean Chemical Engineering Research,
Vol.61, No.1, 162-167, 2023
Zn 도핑 된 δ-MnO2의 수열반응을 통한 chalcophanite 및 todorokite 결정 생성 및 성장
Formation of Chalcophanite and Todorokite from the Hydrothermal Reaction of Zn-doped δ-MnO2
망간산화물은 다양한 결정구조를 가지고 있으며, 특히 초기에 생성되는 나노층상구조의 δ-MnO2 가 다양한 산화환 원 반응에 따라 여러가지 터널 및 층상구조로 변화한다. 최근Zn기반 이차전지에 대한 관심이 증가하고 있지만, 충방전 간 Zn이온이 양극재로 사용되는 망간산화물 결정 구조 변화 및 새로운 결정 생성 등에 미치는 영향에 대한 기초적 이 해를 위해 Zn이온이 망간산화물 결정에 미치는 영향에 대한 연구가 더욱 필요하다. 본 연구에서는 수열반응 간 Zn 도 핑정도가 조절된 나노층상구조의 δ-MnO2의 변화를 통해 todorokite과 chalcophanite이 생성 및 성장되는 것을 확인 하였고, 반응 시간에 따른 변화과정을 확인하였다. Zn의 양이 많을수록 chalcophanite 결정이 우세하게 생성되었고, 결정 생성이 상대적으로 느린 속도로 발생하는 것을 확인하였다.
Diverse structures of Mn oxides in natural and engineered systems occur from the transformation of δ- MnO2, the most common crystalline phase of nucleated Mn oxides, to other structures via redox reactions, adsorption of metals, etc. Recently, together with emerging interests of Zn-based rechargeable battery systems, which use Mn oxides as a cathode, the transformation and recrystallization of Mn oxides have garnered interests. Here, using hydrothermal reaction of Zn-doped δ-MnO2, the formation of todorokite and chalcophanite is observed. When the concentration of doped Zn increases, the formation of chalcophanite is dominant, but occurs slower than that of the lower concentration of doped Zn. This study will provide a new understanding of the effect of Zn on the recrystallization process of Mn oxides during redox cycles in energy storage systems and environmental systems.
[References]
  1. Jung H, et al., J. Am. Chem. Soc., 142(5), 2506, 2020
  2. Post JE, Proc. Natl. Acad. Sci., 96(7), 3447, 1999
  3. Jung H, et al., Geochim. Cosmochim. Acta, 312, 343, 2021
  4. Turner S, Buseck PR, Nature, 304(5922), 143, 1983
  5. Yang P, et al., Environ. Sci. Technol., 2019
  6. Yuan Y, et al., Chem, 5(7), 1793, 2019
  7. Feng X, Zhao H, Liu F, Cui H, Tan W, Li W, Advances in the Environmental Biogeochemistry of Manganese Oxides). American Chemical Society (2015).
  8. Yin H, Feng X, Qiu G, Tan W, Liu F, J. Hazard. Mater., 188(1), 341, 2011
  9. Yin H, et al., Geochim. Cosmochim. Acta, 93, 47, 2012
  10. Yin H, et al., Geochim. Cosmochim. Acta, 117, 1, 2013
  11. Rubel O, et al., J. Phys. Chem. C, 126(27), 10957, 2022
  12. Yuan Y, et al., Joule, 3(2), 471, 2019
  13. Zhao S, et al., Chem. Geol., 493(20), 234, 2018
  14. Villalobos M, Toner B, Bargar J, Sposito G, Geochim. Cosmochim. Acta, 67(14), 2649, 2003
  15. Post JE, Appleman DE, Am. Mineral., 73(11-12), 1401, 1988
  16. Potter RM, Rossman GR, Am. Mineral., 64, I199, 1979
  17. Han SD, et al., Chem. Mater., 29(11), 4874, 2017
  18. Li Y, et al., Chem. Mater., 31(6), 2036, 2019