Issue
Korean Chemical Engineering Research,
Vol.61, No.1, 155-161, 2023
막다른 미세유로 내부의 농축 동역학 분석
Analysis of Preconcentration Dynamics inside Dead-end Microchannel
이온 농도 분극 현상은 전기투석, 전기화학 전지에서 일어나는 기초 이동 현상일 뿐만 아니라, 생체 물질 전처리용 농축 장치의 핵심 기작으로 활용된다. 외부 인가 전압에 의해 발생한 이온 농도 분극 현상은 분석 물질의 농축에 필요 한 국소적으로 증폭된 전기장을 통해 물질의 농축을 가능케 한다. 그러나 기존의 농축 기작은 농축의 평형 지점이 불 분명하며, 농축 플러그의 유체역학적 불안정성의 두가지 문제점을 가지고 있다. 본 연구에서는, 이온 농도 분극 기반 의 농축 기작의 한계점을 해결하기 위해 막다른 미세유로와 양이온 교환막을 사용한 농축 방법을 연구하였다. 막다른 미세유로의 공간 제약적 구조를 통해 유체역학적 안정성을 확보할 수 있으며, 분석 물질의 농축 지점이 이온 공핍 영 역의 충격 전단과 일치함을 수치적으로 확인하였다. 또한 농축 공정의 핵심 인자로써 인가 전압과 미세유로의 체적 전 하 농도를 변화시켜가며, 농축 물질의 전기동역학적 거동을 연구하였다. 본 연구의 결과는 현장 진단 검사(point-ofcare) 와 같은 초단시간의 농축을 필요로 하는 미세유체역학 장치에 유효한 기작으로 사용될 수 있을 것이다.
Ion concentration polarization (ICP) is one of the essential important mechanisms for biomolecule preconcentration devices as well as a fundamental transport phenomenon found in electrodialysis, electrochemical cell, etc. The ICP triggered by externally applied voltage enables the biomolecular analyte to be preconcentrated at an arbitrary position by a locally amplified electric field inside the microchannel. Conventional preconcentration methodologies using the ICP have two limitations: uncertain equilibrium position and hydrodynamic instability of preconcentration plug. In this work, a new preconcentration method in the dead-end microchannel around cation exchange membrane was numerically studied to resolve the limitations. As a result, the numerical model showed that the analyte was concentrated at a shock front developed in a geometrically confined dead-end channel. Furthermore, the electrokinetic behaviors for preconcentration dynamics were analyzed by changing microchannel’s applied voltage and volumetric charge concentration of microchannel as key parameters to describe the dynamics. This work would provide an effective means for a point-of-care platform that requires ultra-fast preconcentration method.
[References]
  1. Kwak R, Pham VS, Lim KM, Han J, Phys. Rev. Lett., 110, 1145001, 2013
  2. Bai P, Li J, Brushett FR, Bazant MZ, Energy Environ. Sci., 9, 3221, 2016
  3. Deen WM, Analysis of Transport Phenomena. (Oxford University Press, 2012).
  4. Kim SJ, Li LD, Han J, Langmuir, 25, 7759, 2009
  5. Kim SJ, Song YA, Han J, Chem. Sov. Rev., 39, 912, 2010
  6. Son SY, Lee S, Lee H, Kim SJ, BIOCHIP J., 1, 2016
  7. Li M, Anand RK, Analyst, 141, 3496, 2016
  8. Choi J, et al., BIOCHIP J., 14, 100, 2020
  9. Kim K, Kim W, Lee H, Kim SJ, Nanoscale, 9, 3466, 2017
  10. Lee H, et al., Nano Lett., 18, 7642, 2018
  11. Andersen MB, Wang KM, Schiffbauer J, Mani A, Electrophoresis, 38, 702, 2017
  12. Schiffbauer J, Demekhin EA, Ganchenko G, Phys. Rev. E, 85, 055302, 2012
  13. Lee S, Hyun CH, Lee H, Korean Chem. Eng. Res., 59, 626, 2021
  14. Mani A, Bazant MZ, Phys. Rev. E, 84, 061504, 2011
  15. Dydek EV, et al., Phys. Rev. Lett., 107, 118301, 2011
  16. Dydek EV, Bazant MZ, AIChE J., 59, 3539, 2013
  17. Kim W, et al., Biosens. Bioelectron., 213, 114350, 2022
  18. Hong SA, Kim YJ, Kim SJ, Yang S, Biosens. Bioelectron., 107, 103, 2018
  19. Masliyah JH, Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena. (Wiley, 2006).
  20. Guo W, et al., Phys. Rev. Appl., 10, 054045, 2018
  21. Kirby BJ, Hasselbrink EF, Electrophoresis, 25, 203, 2004