Issue
Korean Chemical Engineering Research,
Vol.61, No.1, 89-96, 2023
단일 계단 응답에 근거한 Wiener형 비선형 공정의 간편한 모델 확인 방법
Single Step Response Based Method for the Simple Identification of Wiener-type Nonlinear Process
동적 선형 블록과 정적 비선형 블록이 직렬로 연결되어 있는 Wiener형 비선형 모델은 여러 화학 공정의 동특성을 묘사하는데 널리 사용되는데, Wiener형 비선형 공정의 모델 확인은 다소 긴 공정 활성화 데이터가 필요하다. 본 연구 는 이러한 단점을 보완하기 위하여 단일 계단 응답으로부터 Wiener형 비선형 공정 모델을 찾아낼 수 있는 새로운 모 델 확인 방법을 제안한다. 제안된 방법은 계단 응답의 초기 응답으로부터 선형 동적 블록의 예측 응답을 얻어 선형 동 적 블록의 모델을 확인하고, 이어서 비선형 정적 블록의 모델을 확인한다. 본 방법은 단일 계단 응답만을 사용하여 공 정 모델 확인을 위해 필요한 공정 응답을 얻는 과정에서 시간과 비용적으로 큰 이득을 얻을 수 있다. 제안된 공정 확 인 방법의 성능은 대표적인 Wiener형 비선형 공정인 pH 적정 공정과 액위 공정을 대상으로 검증되었다.
The Wiener-type nonlinear model where a static nonlinear block follows a dynamic linear block is widely used to describe the dynamics of chemical processes. A long process excitation step is typically needed to identify this Wiener-type nonlinear model with two blocks. In order to cope with this disadvantage, an identification method for the Wiener-type nonlinear model that uses only a single-step response is proposed here. The proposed method estimates the response of the dynamic linear sub-block from the initial part of the step response, and then the static nonlinear sub-block is identified. Because the only single-step response is used to identify the Wiener-type nonlinear model, there is great benefit in time and cost for obtaining process response. The performance of the proposed identification method with the single-step response is verified through a representative Wiener-type nonlinear process, a pH titration process, and a liquid level system.
[References]
  1. Pajunen G, Automatica, 28, 781, 1992
  2. Sung SW, Lee J, Chem. Eng. Sci., 59, 1515, 2004
  3. Lee J, Choi JY, Chem. Eng. Sci., 55, 1337, 2000
  4. Srihawan T, Panjapornpon C, Tawai A, Ind. Eng. Chem. Res., 57, 13793, 2018
  5. Heo JP, Sung SW, Lee J, ACS Omega., 5, 13822, 2020
  6. Xia Y, Zou J, Yan W, Li H, Appl. Sci., 8, 1758, 2018
  7. Bedi PS, Methekar RN, Patwardhan SC, Prasad V, Gudi RD, IFAC Proc., 40, 101, 2007
  8. Bloemen HHJ, Chou CT, Van den Boom TJJ, Verdult V, Verhaegen M, Backx TC, J. Process Control, 11, 601, 2001
  9. Hagenblad, A., Aspects of the identification of Wiener models, (1999).
  10. Park HC, Lee J, AIChE J., 52, 668, 2006
  11. Sung SW, Je CH, Lee J, Lee DH, Korean J. Chem. Eng., 25, 631, 2008
  12. Edgar TF, Lapidus L, AIChE J., 18, 780, 1972
  13. Lee FY, Edgar TF, Baldea M, Lee J, Ind. Eng. Chem. Res., 58, 12116, 2019
  14. Lee J, Korean Chem. Eng. Res., 58, 190, 2020
  15. Seborg DE, Edgar TF, Mellichamp DA, Doyle III FJ, Process dynamics and control, John Wiley & Sons, 2016.
  16. Sung SW, Lee J, Lee IB, Process identification and PID control, John Wiley & Sons, 2009.
  17. Norquay SJ, Palazoglu A, Romagnoli JA, IEEE Trans. Control Syst. Technol., 7, 437, 1999
  18. Obut S, Ozgen C, Ind. Eng. Chem. Res., 47, 4394, 2008
  19. Lee J, Kyoung I, Heo JP, Park Y, Lim Y, Kim DH, Lee Y, Yang DR, Korean Chem. Eng. Res., 55, 767, 2017