Issue
Korean Chemical Engineering Research,
Vol.61, No.1, 8-18, 2023
유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향
Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies
지속적인 인구의 증가와 경제의 발전으로 인한 전세계 에너지 수요의 증가는 화석연료의 이용을 끊임없이 증가시키 고 있다. 그러나 화석연료에 대한 높은 의존도는 환경오염과 급격한 지구온난화라는 새로운 문제를 야기시켰다. 이의 해결을 위해 전통적인 연소에서 벗어나 열분해, 가스화와 같은 새로운 열화학적 전환 공정을 이용한 청정 에너지 생산 이 빠르게 확산되고 있다. 특히 다양한 연료의 이용, 쉬운 연속조업, 높은 열 및 물질전달, 등온 조업, 낮은 조업 온도 등의 특성들을 가지는 유동층 공정은 열화학적 에너지 전환에 적합하기 때문에 널리 채택되어 이용되고 있다. 이에 본 총설에서는 열분해, 가스화, 연소에 적용된 최근의 유동층 공정 연구의 중요한 결과들을 정리하였다. 더불어 유동층 열 화학적 공정에서 주로 연구되지 않은 층물질, 미세먼지 저감을 위한 물질(바이오매스, 천연 자원 폐기물 등)과 같은 연 구의 필요성을 제시하였다. 이를 통해 유동층 기술에 대한 관심과 이해를 높이고, 유동층 공정 기술 개발의 미래 과제를 해결하기 위한 방향을 제시하고자 한다.
Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.
[References]
  1. Lee R, Gwak YR, Sohn JM, Lee SH, “The Prediction of CO2 Emissions in Domestic Power Generation Sector Between 2020 and 2030 for Korea,” 32(5), 855-873, (2021).
  2. Seo MW, Lee SH, Nam H, Lee D, Tokmurzin D, Wang S, Park YK, Bioresour. Technol., 343, 126109, 2022
  3. Tumsa TZ, Lee SH, Normann F, Andersson K, Ajdari S, Yang W, Chem. Eng. Res. Des., 131, 626, 2018
  4. Lee SH, Kim DW, Lee JM, Bae YC, Korean Chem. Eng. Res., 57(6), 853, 2019
  5. Kim YB, Kang SY, Seo SB, Keel SI, Yun JH, Lee SH, “The Attrition and Calcination Characteristics of Domestic Limestones for in-situ Desulfurization in Circulating Fluidized Bed Boilers,” 57(5), 687-694, (2019).
  6. Fuchs J, Schmid JC, Müller S, Hofbauer H, Renew. Sust. Energ. Rev., 107, 212, 2019
  7. Gholizadeh M, Hu X, Liu Q, Renew. Sust. Energ. Rev., 114, 109313, 2019
  8. Seo SB, Go ES, Ling JLJ, Lee SH, Renew. Energy, 193, 23, 2022
  9. Seo SB, Ahn H, Go ES, Ling LJJ, Siambun NJ, Park YK, Lee SH, Biomass Convers. Biorefin., 1, 2022
  10. Ling J, Kim H, Go E, Oh S, Park H, Jeong C, Lee S, Energy Conv. Manag., 259, 115569, 2022
  11. Kim HW, Seo SB, Kang SY, Go ES, Oh SS, Lee Y, Yang W, Lee SH, Energy Fuels, 227, 120487, 2021
  12. Mallick D, Mahanta P, Moholkar VS, Energy Fuels, 192, 116682, 2020
  13. Lee SH, Lee TH, Jeong SM, Lee JM, Renew. Energy, 138, 121, 2019
  14. Lee JM, Kim DW, Kim JS, Na JG, Lee SH, Energy Fuels, 35(7), 2814, 2010
  15. Barea GA, Leckner B, Prog. Energy Combust. Sci., 36(4), 444, 2010
  16. Seo MW, Kim SD, Na JG, Lee SH, Korean Chem. Eng. Res., 47(6), 734, 2009
  17. Demirbas A, Prog. Energy Combust. Sci., 30(2), 219, 2004
  18. Lee SH, Kim JM, Kim JS, Choe JH, Kim SD, Korean Chem. Eng. Res., 38(4), 516, 2000
  19. Lee JR, Kim YH, Won YS, Korean J. Chem. Eng., 38(9), 1791, 2021
  20. Asl SM, Azhgan S, Movahedirad S, Korean J. Chem. Eng., 35(2), 613, 2018
  21. Usmani Z, Sharma M, Awasthi AK, Sivakumar N, Lukk T, Pecoraro L, Thakur VK, Roberts D, Newbold J, Gupta VK, Bioresour. Technol., 322, 124548, 2021
  22. Collard FX, Blin J, Renew. Sust. Energ. Rev., 38, 594, 2014
  23. Kan T, Strezov V, Evans TJ, “Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters, 57, 1126-1140, (2016).
  24. Balat M, Balat M, Kırtay E, Balat H, Energy Conv. Manag., 50(12), 3147, 2009
  25. Canabarro N, Soares JF, Anchieta CG, Kelling CS, Mazutti MA, “Thermochemical Processes for Biofuels Production from Biomass,” 1(1), 1-10, (2013).
  26. Gautam P, Upadhyay SN, Dubey S, “Bio-methanol as a Renewable Fuel from Waste Biomass: Current Trends and Future Perspective,” 273, 117783, (2020).
  27. Mohan D, Pittman Jr CU, Steele PH, “Pyrolysis of Wood/ biomass for Bio-oil: a Critical Review,” 20(3), 848-889, (2006).
  28. Yao C, Tian H, Hu Z, Yin Y, Chen D, Yan X, Korean J. Chem. Eng., 35(2), 511, 2018
  29. Kaushal P, Abedi J, J. Ind. Eng. Chem., 16(5), 748, 2010
  30. Shun D, Shin JS, Bae DH, Ryu HJ, Park J, Korean J. Chem. Eng., 34(12), 3125, 2017
  31. Qureshi KM, Lup ANK, Khan S, Abnisa F, Daud WMAW, Korean J. Chem. Eng., 38(9), 1797, 2021
  32. Lee HW, Jeong H, Ju YM, Lee SM, Korean J. Chem. Eng., 37(7), 1174, 2020
  33. Kaminsky W, Fuel Commun., 8, 100023, 2021
  34. Suntivarakorn R, Treedet W, Singbua P, Teeramaetawat N, Energy Reports, 4, 565, 2018
  35. Park JY, Kim JK, Oh CH, Park JW, Kwon EE, J. Environ. Manage., 234, 138, 2019
  36. Makkawi Y, El Sayed Y, Salih M, Nancarrow P, Banks S, Bridgwater T, Renew. Energy, 143, 719, 2019
  37. Santamaria L, Beirow M, Mangold F, Lopez G, Olazar M, Schmid M, Li Z, Scheffknecht G, Fuel, 283, 118922, 2021
  38. Song X, Wu Y, He X, Bagley DM, Adidharma H, Wang W, Fan M, Sep. Purif. Technol., 254, 117573, 2021
  39. Yogalakshmi K, Sivashanmugam P, Kavitha S, Kannah Y, Varjani S, AdishKumar S, Kumar G, “Lignocellulosic Biomass- based Pyrolysis: A Comprehensive Review." 286, 131824, (2022).
  40. Efika CE, Onwudili JA, Williams PT, “Influence of Heating Rates on the Products of High-temperature Pyrolysis of Waste Wood Pellets and Biomass Model Compounds,” 76, 497-506, (2018).
  41. Saraeian A, Nolte MW, Shanks BH, Carbon, 104, 262, 2019
  42. Sharifzadeh M, Sadeqzadeh M, Guo M, Borhani TN, Konda NM, Garcia MC, Wang L, Hallett J, Shah N, Directions, 71, 1, 2019
  43. Küçük M, Demirbaş A, Biomass Conversion Processes, 38(2), 151, 1997
  44. Zhang Z, Pang S, Renew. Energy, 132, 416, 2019
  45. Akay G, Jordan CA, “Gasification of Fuel Cane Bagasse in a Downdraft Gasifier: Influence of Lignocellulosic Composition and Fuel Particle Size on Syngas Composition and Yield,” 25(5), 2274-2283, (2011).
  46. Anukam A, Mamphweli S, Reddy P, Meyer E, Okoh O, Renew. Sust. Energ. Rev., 66, 775, 2016
  47. Motta IL, Miranda NT, Maciel Filho R, Maciel MRW, Renew. Sust. Energ. Rev., 94, 998, 2018
  48. Pinto F, André RN, Carolino C, Miranda M, Fuel Process. Technol., 126, 19, 2014
  49. Heidenreich S, Foscolo PU, Prog. Energy Combust. Sci., 46, 72, 2015
  50. Molino A, Chianese S, Musmarra D, J. Energy Chem., 25(1), 10, 2016
  51. Bae K, Lim JH, Kim JH, Lee DH, Han JH, Park SH, Lee DH, Korean J. Chem. Eng., 34(2), 566, 2017
  52. Han SW, Seo MW, Park SJ, Son SH, Yoon SJ, Ra HW, Mun TY, Moon JH, Yoon SM, Kim JH, Korean Chem. Eng. Res., 57(6), 874, 2019
  53. Hai IU, Sher F, Yaqoob A, Liu H, Fuel, 258, 116143, 2019
  54. Benedikt F, Fuchs J, Schmid JC, Müller S, Hofbauer H, Korean J. Chem. Eng., 34(9), 2548, 2017
  55. Karatas H, Akgun F, Fuel, 214, 285, 2018
  56. Stec M, Czaplicki A, Tomaszewicz G, Słowik K, Korean J. Chem. Eng., 35(1), 129, 2018
  57. Makwana JP, Pandey J, Mishra G, Renew. Energy, 130, 943, 2019
  58. Liu L, Huang Y, Cao J, Liu C, Dong L, Xu L, Zha J, Sci. Total Environ., 626, 423, 2018
  59. Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A, Renew. Sust. Energ. Rev., 53, 1333, 2016
  60. Samiran NA, Jaafar MNM, Ng JH, Lam SS, Chong CT, Renew. Sust. Energ. Rev., 62, 1047, 2016
  61. Puig Arnavat M, Bruno JC, Coronas A, Energy Fuels, 26(2), 1385, 2012
  62. Atimtay AT, Kayahan U, Unlu A, Engin B, Varol M, Olgun H, Atakul H, “Co-firing of Pine Chips with Turkish Lignites in 750 kWth Circulating Fluidized Bed Combustion System,” 224, 601-610, (2017).
  63. Göransson K, Söderlind U, He J, Zhang W, Renew. Sust. Energ. Rev., 15(1), 482, 2011
  64. Park SS, Chae HJ, Kim TW, Jeong KE, Kim CU, Jeong SY, Lim JH, Park YK, Lee DH, Korean Chem. Eng. Res., 56(6), 878, 2018
  65. Lian Z, Wang Y, Zhang X, Yusuf A, Famiyeh L, Murindababisha D, Jin H, Liu Y, He J, Wang Y, “Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach,” J., 4(3), 266-287, (2021).
  66. Soanuch C, Korkerd K, Phupanit J, Piemjaiswang R, Piumsomboon P, Chalermsinsuwan B, Korean J. Chem. Eng., 38(3), 540, 2021
  67. Park HS, Baek IH, Hyun JS, Sim JM, Jo YH, Yu JH, Choi HG, Kim SD, Lim JH, Yeo JG, Nam SC, Park SR, Korea Institute of Energy Research, 2018.
  68. Moon JH, Jo SH, Mun TY, Park SJ, Kim JY, Nguyen HK, Lee JG, Korean Chem. Eng. Res., 57(3), 400, 2019
  69. Gwak YR, Kim YB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(5), 631, 2018
  70. Gwak YR, Yun JH, Keel SI, Lee SH, Korean J. Chem. Eng., 37(11), 1878, 2020
  71. Jang HN, Sung JH, Choi HS, Seo YC, Korean Chem. Eng. Res., 55(6), 846, 2017
  72. Cammarota A, Cammarota F, Chirone R, Ruoppolo G, Solimene R, Urciuolo M, Sci. Technol., 2019.
  73. Nguyen HK, Moon JH, Jo SH, Park SJ, Seo MW, Ra HW, Yoon SJ, Yoon SM, Song BH, Lee U, Energy Fuels, 196, 117020, 2020
  74. Sher F, Pans MA, Sun C, Snape C, Liu H, Fuel, 215, 778, 2018
  75. Wang X, Ren Q, Li W, Li H, Li S, Lu Q, Energy Fuels, 31(3), 3234, 2017
  76. Chi H, Pans MA, Sun C, Liu H, Fuel, 240, 349, 2019
  77. Go ES, Kook JW, Seo KW, Seo SB, Kim HW, Kang SY, Lee SH, Korean Chem. Eng. Res., 59(3), 417, 2021
  78. Yoon SH, Beak GU, Moon JH, Jo SH, Park SJ, Kim JY, Seo MW, Yoon SJ, Yoon SM, Lee JG, Korean Chem. Eng. Res., 59(1), 127, 2021
  79. Luis F, de las Obras Loscertales M, García Labiano F, Rufas A, Abad A, Gayán P, Adánez J, Int. J. Greenhouse Gas Control., 5(5), 1190, 2011
  80. Kang S, Go E, Seo S, Kim H, Keel S, Lee S, Sci. Total Environ., 758, 143704, 2021
  81. Kim YB, Gwak YR, Keel SI, Yun JH, Lee SH, Chem. Eng. J., 377, 119650, 2019
  82. Kang SY, Seo SB, Go ES, Kim HW, Keel SI, Park YK, Lee SH, Fuel, 291, 120270, 2021
  83. Kim YB, Gwak YR, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(6), 856, 2018
  84. Kim YB, Kang SY, Seo SB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 57(5), 687, 2019
  85. Li B, Li Y, Zhang W, Qian Y, Wang Z, Korean J. Chem. Eng., 37(4), 688, 2020
  86. Park JH, Lee DH, Bae DH, Choi YJ, Ryu HW, Kim JB, Han KH, Shun D, Korean Chem. Eng. Res., 57(4), 492, 2019
  87. Nam H, Wang S, Sanjeev K, Seo MW, Adhikari S, Shakya R, Lee D, Shanmugam SR, Biomass Bed Material Catalyst, 225, 113408, 2020
  88. Kim HW, Lee D, Nam H, Hong YW, Seo SB, Go ES, Kang SY, Lee SH, Clean Technol., 26(1), 65, 2020