Issue
Korean Chemical Engineering Research,
Vol.60, No.4, 582-587, 2022
젖은 벽탑을 이용한 디에틸렌트리아민과 디에틸에탄올아민 수용액의 CO2 흡수속도 측정
Kinetics of CO2 Absorption in Aqueous DETA and DEEA Solutions by Wetted-Wall Column
연소 배가스 중 CO2를 포집하기 위한 에너지 저감형 흡수제로 상분리 흡수제가 주목 받고 있다. 본 연구에서는 2종 의 아민을 혼합한 상분리 흡수제 중 하나인 디에틸렌트리아민(diethylenetriamine, DETA)과 디에틸아미노에탄올 (diethylaminoethanol, DEEA) 흡수제를 구성하는 DETA와 DEEA 각각의 흡수 속도를 측정하기 위해 젖은 벽탑을 사용하였다. 총괄 물질전달 계수에 대한 DETA 및 DEEA의 농도와 조업 온도에 따른 영향을 고찰하였다. 그 결과 DETA 농도에 따라 총괄 물질전달 계수는 비례하였지만 DEEA 농도의 경우 그 영향이 적었고 일정 농도를 넘어설 경우 총 괄 물질전달 계수가 감소하였다. DETA 수용액은 조업 온도에 따라 총괄 물질전달 계수의 변화가 적었던 반면 DEEA 수용액은 조업 온도에 따라 총괄 물질전달 계수가 증가하였다. 의사 1차 반응 가정 하에서 관찰 반응 속도 상수를 구한 결과 DETA 수용액에서의 관찰 반응속도 상수는 DETA 농도에 따라 비례하는 관계를 가지나 DEEA는 의사 1차 반응 가정에 맞지 않는 것으로 나타났다.
Biphasic solvents are attracting attention as energy-reducing solvents for capturing CO2 from flue gas in combustion process. In this study, considering diethylenetriamine (DETA) and diethylethanolamine (DEEA) mixed solvents, one of the biphasic solvents by blending of two types of amines, the CO2 absorption rates of DETA and DEEA was measured by wetted wall column. The effects of DETA and DEEA concentrations and operating temperature on the overall mass transfer coefficient were investigated. As a result, the overall mass transfer coefficient was proportional to the DETA concentration. However, in the case of the DEEA concentration, the effect was small and when the concentration was exceeded, the overall mass transfer coefficient decreased. The DETA aqueous solution showed little change in the overall mass transfer coefficient with the operating temperature, whereas the DEEA aqueous solution increased the overall mass transfer coefficient with the operating temperature. As a result of obtaining the observed reaction rate constant under the pseudo-first-order reaction assumption, it was found that the observed reaction rate constant in DETA aqueous solution was proportional to the DETA concentration, but DEEA did not fit the pseudo-firstorder reaction assumption.
[References]
  1. Ochedi FO, Yu J, Yu H, Liu Y, Hussain A, Environ. Chem. Lett., 19, 770109, 2021
  2. Jang GG, Thompson JA, Sun X, Tsouris C, Chem. Eng. J., 426, 131240, 2021
  3. Papadopoulos AI, Tzirakis F, Tsivintzelis I, Seferlis P, Ind. Eng. Chem. Res., 58(13), 5088, 2019
  4. Hu L, “Phase Transitional Absorption Method,”US Patent No. 7,541,011,B2 (2009).
  5. Raynal L, Briot P, Dreillard M, Broutin P, Mangiaracina A, Salghetti B, Politi M, Marca CL, Mertens J, Thielens ML, Laborie G, Energy Procedia, 63, 6298, 2014
  6. Pinto DDD, Zaidy SAH, Hartono A, Svendsen HF, Int. J. GHG Control, 28, 318, 2014
  7. You JK, Lee WY, Kim JY, Hong YK, Energy Procedia, 114, 2096, 2017
  8. Lee J, Hong YK, You JK, Korean J. Chem. Eng., 34(6), 1840, 2017
  9. Danckwerts PV, Gas Liquid Reactions, McGraw-Hill, New York, NY (1970).
  10. Hartono A, Svendsen HF, J. Chem. Thermodyn., 41(9), 973, 2009
  11. Maham Y, Lebrette L, Mather AE, J. Chem. Eng. Data, 47(3), 550, 2002
  12. Penttilä A, Dell’Era C, Uusi-Kyyny P, Alopaeus V, Fluid Phase Equilib., 311, 59, 2011
  13. Monteiro JGMS, Majeed H, Knuutila H, Svendsen HF, Chem. Eng. Sci., 129, 145, 2015
  14. Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data, 33, 29, 1988
  15. Hartono A, da Silva EF, Svendsen HF, Chem. Eng. Sci., 64, 3205, 2009
  16. Monteiro JGMS, Knuutila H, Penders-van Elk NJMC, Versteeg G, Svendsen HF, Chem. Eng. Sci., 127, 1, 2015