Issue
Korean Chemical Engineering Research,
Vol.60, No.4, 544-549, 2022
Taxus chinensis로부터 파클리탁셀 정제를 위한 음압 캐비테이션 아세톤-펜테인 분별침전
Negative Pressure Cavitation Acetone-Pentane Fractional Precipitation for the Purification of Paclitaxel from Taxus chinensis
본 연구에서는 음압 캐비테이션 아세톤-펜테인 분별침전으로 Taxus chinensis로부터 파클리탁셀의 침전 효율을 획기적으로 개선하였다. 음압 -200 mmHg에서 침전할 경우 짧은 조업 시간(5분)에 대부분의 파클리탁셀을 회수(>99.9%) 할 수 있었다. 침전 속도 상수는 대조군 대비 1.512~5.073배(-50~-200 mmHg) 증가하였다. 음압으로 활성화에너지는 -3737~-6536 J/mol 감소하였으며, 이로 인해 침전 속도가 증가하였다. 또한 음압 도입으로 침전물 크기는 5.3배 감소 하였으며, 파클리탁셀의 확산 계수는 7.0배 증가하였다.
This study presents the negative pressure cavitation acetone-pentane fractional precipitation to dramatically improve the precipitation efficiency of paclitaxel from Taxus chinensis. When paclitaxel was precipitated under a negative pressure of -200 mmHg, most paclitaxel (>99.9%) could be recovered in a short precipitation time (5 min). The precipitation rate constant increased by 1.512~5.073 times (at -50 mmHg to -200 mmHg) compared to the control. The activation energy decreased by -3,737~-6,536 J/mol due to negative pressure, which increased the precipitation rate. With the introduction of negative pressure, the precipitate size decreased by 5.3 times, and the diffusion coefficient of paclitaxel increased by 7.0 times.
[References]
  1. Montero P, Pérez-Leal M, Pérez-Fidalgo JA, Sanz C, Estornut C, Roger I, Milara J, Cervantes A, Cortijo J, Cancers, 14, 1146, 2022
  2. Zhu L, Chen L, Cell. Mol. Biol. Lett., 24, 40, 2019
  3. Caillaud M, Patel NH, White A, Wood M, Contreras KM, Toma W, Alkhlaif Y, Roberts JL, Tran TH, Jackson AB, Poklis J, Gewirtz DA, Damaj MI, Brain. Behav. Immun., 93, 172, 2021
  4. Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA, Int. J. Pharm., 526, 474, 2017
  5. Tan L, Yang LL, Li YJ, Jiang ZF, Li QY, Ma RR, He JY, Zhou LD, Zhang QH, Yuan CS, Microchem J., 165, 106042, 2021
  6. Jang YS, Kim JH, Biotechnol. Bioprocess Eng., 24, 529, 2019
  7. Ghorbani M, Pourjafar F, Saffari M, Asgari Y, Meta Gene, 26, 100800, 2020
  8. Sun T, Liu Y, Li M, Yu H, Piao H, Mol. Cell. Probes, 53, 101602, 2020
  9. https://www.360researchreports.com/global-paclitaxel-sales-market-16679274.
  10. Modarresi-Darreh B, Kamali K, Kalantar SM, Dehghanizadeh H, Aflatoonian B, Eurasia J. Biosci., 12, 413, 2018
  11. Oguzkan SB, Karagul B, Uzun A, Guler OO, Ugras HI, Int. J. Pharmacol., 14, 76, 2018
  12. Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW, Lee EK, Loake GJ, BMB Rep., 49, 149, 2016
  13. Kang HJ, Kim JH, Process Biochem., 99, 316, 2020
  14. Seo HW, Kim JH, Process Biochem., 87, 238, 2019
  15. Oh SR, Kim JH, Korean J. Chem. Eng., 38, 480, 2021
  16. Lee CG, Kim JH, Process Biochem., 59, 216, 2017
  17. Kang IS, Kim JH, Sep. Purif. Technol., 99, 14, 2012
  18. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Biotechnol. Lett., 22, 1753, 2000
  19. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37, 679, 2002
  20. Jeon SI, Mun S, Kim JH, Process Biochem., 41, 276, 2006
  21. Jeon YL, Kim JH, Korean J. Chem. Eng., 30, 1954, 2013
  22. Sim HA, Lee JY, Kim JH, Sep. Purif. Technol., 89, 112, 2012
  23. Min HS, Kim JH, Biotechnol. Bioprocess Eng., 26, 660, 2021
  24. Schueller BS, Yang RT, Ind. Eng. Chem. Res., 40, 4912, 2001
  25. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 24, 513, 2019
  26. Kim JH, Korean Chem. Eng. Res., 58, 273, 2020
  27. Dalvi SV, Dave RN, Int. J. Pharm., 387, 172, 2010
  28. Lee SH, Kim JH, Process Biochem., 76, 187, 2019
  29. Yoo KW, Kim JH, Biotechnol. Bioprocess Eng., 23, 532, 2018
  30. Min HS, Kim JH, Korean J. Chem. Eng., 39, 58, 2022
  31. Dalvi SV, Yadav MD, Ultrason. Sonochem., 24, 114, 2015
  32. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J, Asian J. Pharm. Sci., 9, 304, 2014
  33. Ma D, Marshall JS, Wu J, J. Acoust. Soc. Am., 114, 3496, 2018
  34. Guo Z, Jones AG, Li N, Chem. Eng. Sci., 61, 1617, 2008
  35. Wolloch L, Kost J, J. Control. Release, 148, 204, 2010